Molecular Diversity

, Volume 19, Issue 3, pp 435–445 | Cite as

Aqueous hydrotrope: an efficient and reusable medium for a green one-pot, diversity-oriented synthesis of quinazolinone derivatives

  • Amol Patil
  • Madhuri Barge
  • Gajanan Rashinkar
  • Rajashri Salunkhe
Full-Length Paper


A library of quinazolinones was prepared by the one-pot three-component reaction of isatoic anhydride, ammonium salts/amines, and various electrophiles using aqueous hydrotropic solution as an efficient, economical, reusable, and green medium giving good to excellent yields of products in very short time. The method offers a versatile way for the development of diversity-oriented synthesis of quinazolinones.


Hydrotrope Quinazolinones Diversity-oriented synthesis (DOS) Multicomponent reaction Aqueous medium 



Authors R. S. S. and A. A. P. thank UGC, New Delhi for financial assistance [F. No. 41-310/2012 (SR)] and for the research fellowship, respectively.

Supplementary material

11030_2015_9580_MOESM1_ESM.doc (22.8 mb)
Supplementary material 1 (doc 23371 KB)


  1. 1.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. doi: 10.1039/B918763B PubMedCrossRefGoogle Scholar
  2. 2.
    Li CJ, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82. doi: 10.1039/B507207G PubMedCrossRefGoogle Scholar
  3. 3.
    Li CJ (2005) Organic reactions in aqueous media with a focus on carbon–carbon bond formations: a decade update. Chem Rev 105:3095–3165. doi: 10.1021/cr030009u PubMedCrossRefGoogle Scholar
  4. 4.
    Vemula VR, Lagishetty V, Lingala S (2010) Solubility enhancement techniques. Int J Pharm Sci Rev Res 5:41–51Google Scholar
  5. 5.
    Neuberg C (1916) Hydrotropic phenomena. Biochem Z 76:107–176Google Scholar
  6. 6.
    McKee RH (1946) Use of hydrotropic solutions in industry. Ind Eng Chem 38:382–384. doi: 10.1021/ie50436a012 CrossRefGoogle Scholar
  7. 7.
    Kumbhar A, Kamble S, Jadhav S, Rashinkar G, Salunkhe R (2012) Silica tethered Pd-DABCO complex: an efficient and reusable catalyst for Suzuki-Miyaura reaction. Catal Lett 142:1388–1396. doi: 10.1007/s10562-012-0912-3 CrossRefGoogle Scholar
  8. 8.
    Kurane R, Jadhav J, Khanapure S, Salunkhe R, Rashinkar G (2013) Synergistic catalysis by an aerogel supported ionic liquid phase (ASILP) in the synthesis of 1,5-benzodiazepines. Green Chem 15:1849–1856. doi: 10.1039/c3gc40592c CrossRefGoogle Scholar
  9. 9.
    Hayakawa M, Kaizawa H, Moritomo H, Koizumi T, Ohishi T, Okada M, Ohta M, Tsukamoto S, Parker P, Workman P, Waterfield M (2006) Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110\(\upalpha \) inhibitors. Bioorg Med Chem 14:6847–6858. doi: 10.1016/j.bmc.2006.06.046 PubMedCrossRefGoogle Scholar
  10. 10.
    Noolvi M, Patel H, Bhardwaj V, Chauhan A (2011) Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives : search for anticancer agent. Eur J Med Chem 46:2327–2346. doi: 10.1016/j.ejmech.2011.03.015 PubMedCrossRefGoogle Scholar
  11. 11.
    Ashton W, Hynes J (1973) Synthesis of 5-substituted quinazolines as potential antimalarial agents. J Med Chem 16:1233–1237. doi: 10.1021/jm00269a005 PubMedCrossRefGoogle Scholar
  12. 12.
    Amir M, Ali I, Hasan M (2013) Design and synthesis of some new quinazolin-4-\((3H)\)-ones as anticonvulsant and antidepressant agents. Arch Pharm Res 36:61–68. doi: 10.1007/s12272-013-0004-y PubMedCrossRefGoogle Scholar
  13. 13.
    Manhas MS, Hoffman WA, Bose AK (2009) Heterocyclic compounds XII. Quinazoline derivatives as potential antifertility agents. J Heterocycl Chem 16:711–715. doi: 10.1002/jhet.5570160420 CrossRefGoogle Scholar
  14. 14.
    Kung P, Casper M, Cook K, Wilson-Lingardo L, Risen LM, Vickers TA, Ranken R, Blyn L, Wyatt JR, Cook PD, Ecker DJ (1999) Structure-activity relationships of novel 2-substituted quinazoline antibacterial agents. J Med Chem 42:4705–4713. doi: 10.1021/jm9903500 PubMedCrossRefGoogle Scholar
  15. 15.
    Xu G, Song B, Bhadury PS, Yang S, Zhang P, Jin L, Xue W, Hu D, Lu P (2007) Synthesis and antifungal activity of novel \(s\)-substituted 6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg Med Chem 15:3768–3774. doi: 10.1016/j.bmc.2007.03.037 PubMedCrossRefGoogle Scholar
  16. 16.
    Potewar TM, Ingale SA, Srinivasan KV (2008) Synthesis of tryptanthrin and deoxyvasicinone by a regioselective lithiation-intramolecular electrophilic reaction approach. ARKIVOC xiv:100–108CrossRefGoogle Scholar
  17. 17.
    Lednicer D, Mitscher LA (1977) The organic chemistry of drug synthesis, vol 1. A Wiley-Interscience Publication, New YorkGoogle Scholar
  18. 18.
    Larksarp C, Alper H (2000) Palladium-catalyzed cyclocarbonylation of \(o\)-iodoanilines with heterocumulenes: regioselective preparation of \(4(3H)\)-quinazolinone derivatives. J Org Chem 65:2773–2777. doi: 10.1021/jo991922r PubMedCrossRefGoogle Scholar
  19. 19.
    Beccalli EM, Broggini G, Paladino G, Penoni A, Zoni C (2004) Regioselective formation of six- and seven-membered ring by intramolecular Pd-catalyzed amination of \(N\)-allyl-anthranilamides. J Org Chem 69:5627–5630. doi: 10.1021/jo0495135 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang X, Ye D, Sun H, Guo D, Wang J, Huang H, Zhang X, Jiang H, Liu H (2009) Microwave-assisted synthesis of quinazolinone derivatives by efficient and rapid iron-catalyzed cyclization in water. Green Chem 11:1881–1888. doi: 10.1039/b916124b CrossRefGoogle Scholar
  21. 21.
    Broggini G, Borsini E, Fasana A, Poli G, Liron F (2012) Transition-metal-catalyzed hydroamination and carboamination reactions of anthranilic allenamides as a route to 2-vinyl- and 2-(\(\upalpha \)-styryl)quinazolin-4-one derivatives. Eur J Org Chem 19:3617–3624. doi: 10.1002/ejoc.201200353 CrossRefGoogle Scholar
  22. 22.
    Alizadeh A, Ghanbaripour R, Zhu L (2014) An efficient approach to the synthesis of coumarin-bearing 2,3-dihydro-4\((1H)\)-quinazolinone derivatives using a piperidine and molecular iodine dual-catalyst system. Synlett 25:1596–1600. doi: 10.1055/s-0033-1341202 CrossRefGoogle Scholar
  23. 23.
    He L, Li H, Chen J, Wu X (2014) Recent advances in \(4(3H)\)-quinazolinone syntheses. RSC Adv 4:12065–12077. doi: 10.1039/c4ra00351a CrossRefGoogle Scholar
  24. 24.
    Dabiri M, Salehi P, Otokesh S, Baghbanzadeh M, Kozehgary G, Mohammadi A (2005) Efficient synthesis of mono- and disubstituted 2,3-dihydroquinazolin-4\((1H)\)-ones using KAl\(({\rm SO}_{4})_{2}. {\rm H}_{2}{\rm O}\) as a reusable catalyst in water and ethanol. Tetrahedron Lett 46:6123–6126. doi: 10.1016/j.tetlet.2005.06.157 CrossRefGoogle Scholar
  25. 25.
    Dabiri M, Salehi P, Baghbanzadeh M, Zolfigol MA, Agheb M, Heydari S (2008) Silica sulfuric acid: An efficient reusable heterogeneous catalyst for the synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones in water and under solvent-free conditions. Catal Commun 9:785–788. doi: 10.1016/j.catcom.2007.08.019 CrossRefGoogle Scholar
  26. 26.
    Salehi P, Dabiri M, Baghbanzadeh M, Bahramnejad M (2006) One-pot, three-component synthesis of 2,3-dihydro-4\((1H)\)-quinazolinones by Montmorillonite K-10 as an efficient and reusable catalyst. Synth Commun 36:2287–2292. doi: 10.1080/00397910600639752 CrossRefGoogle Scholar
  27. 27.
    Dabiri M, Salehi P, Bahramnejad M, Alizadeh M (2010) A practical and versatile approach toward a one-pot synthesis of 2,3-disubstituted \(4(3H)\)-quinazolinones. Monatsh Chem 141:877–881. doi: 10.1007/s00706-010-0341-1 CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Lu H, Yang S, Gao J (2010) Synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic \({\rm Fe}_{3}{\rm O}_{4}\) nanoparticles in water. J Comb Chem 12:643–646. doi: 10.1021/cc100047j PubMedCrossRefGoogle Scholar
  29. 29.
    Yavari I, Beheshti S (2011) ZnO nanoparticles catalyzed efficient one-pot three-component synthesis of 2,3-disubstituted quinazolin-4\((1H)\)-ones under solvent-free conditions. J Iran Chem Soc 8:1030–1035. doi: 10.1007/BF03246559 CrossRefGoogle Scholar
  30. 30.
    Chen J, Wu D, He F, Liu M, Wu H, Ding J, Su W (2008) Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones and quinazolin-4\((3H)\)-ones. Tetrahedron Lett 49:3814–3818. doi: 10.1016/j.tetlet.2008.03.127 CrossRefGoogle Scholar
  31. 31.
    Surpur MP, Singh PR, Patil SB, Samant SD (2007) Expeditious one-pot and solvent-free synthesis of dihydroquinazolin-4\((1H)\)-ones in the presence of microwaves. Synth Commun 37:1965–1970. doi: 10.1080/00397910701354699 CrossRefGoogle Scholar
  32. 32.
    Wang L, Hu L, Shao J, Yu J, Zhang L (2008) A novel catalyst zinc(II) perfluorooctanoate \([{\rm Zn(PFO)}_{2}]\)-catalyzed three-component one-pot reaction: Synthesis of quinazolinone derivatives in aqueous micellar media. J Fluorine Chem 129:1139–1145. doi: 10.1016/j.jfluchem.2008.08.005 CrossRefGoogle Scholar
  33. 33.
    Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43:46–58. doi: 10.1002/anie.200300626 CrossRefGoogle Scholar
  34. 34.
    Posner GH (1986) Multicomponent one-pot annulations forming three to six bonds. Chem Rev 86:831–844. doi: 10.1021/cr00075a007 CrossRefGoogle Scholar
  35. 35.
    Estevez V, Villacampa M, Menendez C (2010) Multicomponent reactions for the synthesis of pyrroles. Chem Soc Rev 39:4402–4421. doi: 10.1039/b917644f PubMedCrossRefGoogle Scholar
  36. 36.
    Zhu S, Ji S, Su X, Sun C, Liu Y (2008) Facile and efficient synthesis of a new class of bis(3\(^\prime \)-indolyl)pyridine derivatives via one-pot multicomponent reactions. Tetrahedron Lett 49:1777–1781. doi: 10.1016/j.tetlet.2008.01.054
  37. 37.
    Kamble SB, Kumbhar AS, Rashinkar GS, Barge MS, Salunkhe RS (2012) Ultrasound promoted efficient and green synthesis of \(\beta \)-amino carbonyl compounds in aqueous hydrotropic medium. Ultrason Sonochem 19:812–815. doi: 10.1016/j.ultsonch.2011.12.001 PubMedCrossRefGoogle Scholar
  38. 38.
    Barge MS, Kamble SB, Kumbhar AS, Rashinkar GS, Salunkhe RS (2013) Hydrotrope: green and rapid approach for the catalyst-free synthesis of pyrazole derivatives. Monatsh Chem 144:1213–1218. doi: 10.1007/s00706-013-0944-4 CrossRefGoogle Scholar
  39. 39.
    Saffar-Teluri A, Bolouk S (2010) One-pot, three-component synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones using \(p\)-toluenesulfonic acid-paraformaldehyde copolymer as an efficient and reusable catalyst. Monatsh Chem 141:1113–1115. doi: 10.1007/s00706-010-0376-3 CrossRefGoogle Scholar
  40. 40.
    Darvatkar NB, Bhilare SV, Deorukhkar AR, Raut DG, Salunkhe MM (2010) [bmim]\({\rm HSO}_{4}\): an efficient and reusable catalyst for one-pot three-component synthesis of 2,3-dihydro-4\((1H)\)-quinazolinones. Green Chem Lett Rev 3:301–306. doi: 10.1080/17518253.2010.485581 CrossRefGoogle Scholar
  41. 41.
    Karimi-Jaberi Z, Arjmandi R (2011) Acetic acid-promoted, efficient, one-pot synthesis of 2,3-dihydroquinazolinone-4\((1H)\)-ones. Monatsh Chem 142:631–635. doi: 10.1007/s00706-011-0494-6 CrossRefGoogle Scholar
  42. 42.
    Mohammadi AA, Rohi H, Soorki AA (2013) Synthesis and In Vitro antibacterial activities of novel 2-aryl-3-(phenylamino)-2,3-dihydroquinazolin-4\((1H)\)-one derivatives. J Heterocycl Chem 50:1129–1133. doi: 10.1002/jhet.1075 Google Scholar
  43. 43.
    Baghbanzadeh M, Salehi P, Dabiri M, Kozehgary G (2006) Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4\((1H)\)-one. Synthesis 2:344–348. doi: 10.1055/s-2005-924766 Google Scholar
  44. 44.
    Dabiri M, Salehi P, Mohammadi AA, Baghbanzadeh M (2005) One-pot synthesis of mono- and disubstituted \((3H)\)-quinazolin-4-ones in dry media under microwave irradiation. Synth Commun 35:279–287. doi: 10.1081/SCC-200048462 CrossRefGoogle Scholar
  45. 45.
    Khosropour AR, Mohammadpoor-Baltork I, Gharbankhani H (2006) \({\rm Bi(TFA)}_{3}\text{- }{\rm [nbp]}{\rm FeCl}_{4}\): A new, efficient and reusable promoter system for the synthesis of \(4(3H)\)-quinazolinone derivatives. Tetrahedron Lett 47:3561–3564. doi: 10.1016/j.tetlet.2006.03.079 CrossRefGoogle Scholar
  46. 46.
    Shokrolahi A, Zali A, Zarei M, Esmaeilpour K (2012) Sulfonated porous carbon (SPC): an efficient and recyclable solid acid catalyst for one-pot three-component synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones under solvent-free conditions. Iran J Catal 2:91–94Google Scholar
  47. 47.
    Furnis B, Hannaford A, Smith P, Tatchell A (1996) Vogel’s textbook of practical organic chemistry. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Amol Patil
    • 1
  • Madhuri Barge
    • 1
  • Gajanan Rashinkar
    • 1
  • Rajashri Salunkhe
    • 1
  1. 1.Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations