Skip to main content
Log in

In silico identification of targets for a novel scaffold, 2-thiazolylimino-5-benzylidin-thiazolidin-4-one

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Thiazolidinone derivatives have been found to exhibit a wide range of pharmacological activities. 2-Thiazolylimino-5-benzylidene-thiazolidin-4-one derivatives show antibacterial activity in in vitro tests which are comparable to marketed drugs. However, the target for this scaffold remains yet to be identified. In our work, we identified seven putative targets for this scaffold using web servers such as DRAR-CPI, PharmMapper, and TarFisDock and databases such as BindingDB and ChEMBL. Each of these servers used different algorithms and scoring functions for protein target identification. Further, these targets are substantiated by molecular docking analysis. Based on the docking studies, scaffold 2-thiazolylimino-5-benzylidene-thiazolidin-4-one is observed to exhibit affinity against diverse targets, particularly, towards COX-2, acetylcholinesterase, aldose reductase, and thyroid hormone receptor alpha. This study describes an initial probability that these proteins may be targeted by this scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rao VS, Srinivas K (2011) Modern drug discovery process: an in silico approach. J Bioinform Seq Anal 2:89–94. doi:10.5897/JBSA

    Google Scholar 

  2. Tang Y, Zhu W, Chen K, Jiang H (2006) New technologies in computer-aided drug design: toward target identification and new chemical entity discovery. Drug Discov Today Technol 3:307–313. doi:10.1016/j.ddtec.2006.09.004

    Article  PubMed  Google Scholar 

  3. Lindsay MA (2003) Target discovery. Nat Rev Drug Discov 2:831–838. doi:10.1038/nrd1202

    Article  CAS  PubMed  Google Scholar 

  4. Jenkins JL, Bender A, Davies JW (2007) In silico target fishing: predicting biological targets from chemical structure. Drug Discov Today Technol 3:413–421. doi:10.1016/j.ddtec.2006.12.008

    Article  Google Scholar 

  5. Zhou H, Wu S, Zhai S, Liu A, Sun Y, Li R, Zhang Y, Ekins S, Swaan PW, Fang B (2008) Design, synthesis, cytoselective toxicity, structure-activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J Med Chem 51:1242–1251. doi:10.1021/jm7012024

    Article  CAS  PubMed  Google Scholar 

  6. Vicini P, Geronikaki A, Anastasia K, Incerti M, Zani F (2006) Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg Med Chem 14:3859–3864. doi:10.1016/j.bmc.2006.01.043

    Article  CAS  PubMed  Google Scholar 

  7. Vicini P, Geronikaki A, Incerti M, Zani F, Dearden J, Hewitt M (2008) 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity: Synthesis and structure-activity relationship. Bioorg Med Chem 16:3714–3724. doi:10.1016/j.bmc.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  8. Verma A, Saraf SK (2008) 4-Thiazolidinone-A biologically active scaffold. Eur J Med Chem 43:897–905. doi:10.1016/j.ejmech.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  9. Abhinit M, Ghodke M, Pratima NA (2009) Exploring potential of 4-thiazolidinone: a brief review. Int J Pharm Pharm Sci 1:47–64

    CAS  Google Scholar 

  10. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34:W219–W224. doi:10.1093/nar/gkl114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, Zhu W, Chen K, Wang X, Jiang H (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinform 9:104. doi:10.1186/1471-2105-9-104

    Article  Google Scholar 

  12. Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L (2011) DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res 39:W492–W498. doi:10.1093/nar/gkr299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38:W609–W614. doi:10.1093/nar/gkq300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Geronikaki A, Eleftheriou P, Vicini P, Alam I, Dixit A, Saxena AK (2008) 2-Thiazolylimino/heteroarylimino-5-arylidene-4-thiazolidinones as new agents with SHP-2 inhibitory action. J Med Chem 51:5221–5228. doi:10.1021/jm8004306

    Article  CAS  PubMed  Google Scholar 

  15. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. doi:10.1093/nar/gkr777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Eleftheriou P, Geronikaki A, Hadjipavlou-Litina D, Vicini P, Filz O, Filimonov D, Poroikov V, Chaudhaery SS, Roy KK, Saxena A (2011) Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/ lipoxygenase inhibitors. Eur J Med Chem 47:111–124. doi:10.1016/j.ejmech.2011.10.029

    Article  PubMed  Google Scholar 

  17. Geronikaki AA, Lagunin AA, Hadjipavlou-Litina DI, Eleftheriou PT, Filimonov DA, Poroikov VV, Alam I, Saxena AK (2008) Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/ lipoxygenase inhibition. J Med Chem 51:1601–1609. doi:10.1021/jm701496h

    Article  CAS  PubMed  Google Scholar 

  18. Maestro, Version 9.0 (2009) Schrödinger, LLC, New York

  19. Glide, Version 5.5 (2009) Schrödinger, LLC, New York

  20. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Daniel T, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

  21. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins Struct Funct Bioinform 52:609–623. doi:10.1002/prot.10465

    Article  CAS  Google Scholar 

  22. DeLano WL (2001) Pymol: an open source molecular graphics. CCP4 Newsl On Protein Crystallogr 40:82–92

    Google Scholar 

  23. Laurie ATR, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein—ligand binding sites. Bioinformatics 21:1908–1916. doi:10.1093/bioinformatics/bti315

    Article  CAS  PubMed  Google Scholar 

  24. ROCS, Version 3.0.0 (2009) OpenEye Scientific Software, Santa Fe, NM

  25. Fontaine F, Bolton E, Borodina Y, Bryant SH (2007) Fast 3D shape screening of large chemical databases through alignment-recycling. Chem Cent J 1:1–14. doi:10.1186/1752-153X-1-12

    Article  Google Scholar 

  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL\_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kotera M, McDonald AG, Boyce S, Tipton KF (2008) Functional group and substructure searching as a tool in metabolomics. PLoS ONE 3:e1537. doi:10.1371/journal.pone.0001537

    Article  PubMed Central  PubMed  Google Scholar 

  29. Stobaugh RE (1985) Chemical substructure searching. J Chem Inf Comput Sci 25:271–275. doi:10.1021/ci00047a025

    Article  CAS  Google Scholar 

  30. Keller TH, Pichota A, Yin Z (2006) A practical view of ‘druggability’. Curr Opin Chem Biol 10:357–361. doi:10.1016/j.cbpa.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  31. LigPrep, Version 2.3 (2009) Schrödinger, LLC, New York

  32. QikProp, Version, 3.2 (2009) Schrödinger, LLC, New York

  33. Chen XP, Du GH (2007) Target validation: a door to drug discovery. Drug Discov Ther 1:23–29

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elizabeth Sobhia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. (S1). Slanted cladogram of the aligned protein sequences (TIFF 48 KB)

Fig. (S2). Top Hits from Specs Database Screening along with their Tanimoto Combo values* (TIFF 138 KB)

Fig. (S3). Superposition of ligand from 2FPT (gray) on the query green) (TIFF 1,376 KB)

11030_2015_9578_MOESM4_ESM.doc

Fig. (S4). Multiple sequence alignment of proteins 2H77, 3DCT, and 3K8S using ClustalX. The active-site residues are represented in box (doc 258 KB)

Fig. (S5). Thiazole Series of Compounds (doc 100 KB)

Fig. (S6). Benzothiazole Series of Compounds (doc 56 KB)

11030_2015_9578_MOESM7_ESM.doc

Fig. (S7). Structures of core moieties present in (a) Thiazole series and (b) Benzothiazole series of compounds (doc 320 KB)

Table S1. Targets from TarFisDock (doc 37 KB)

Table S2. Targets from DRAR-CPI (doc 37 KB)

Table S3. Targets from PharmMapper (doc 42 KB)

Table S4. Targets selected from different servers based on druggability (doc 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, P., Bolla, J., Kumar, V. et al. In silico identification of targets for a novel scaffold, 2-thiazolylimino-5-benzylidin-thiazolidin-4-one. Mol Divers 19, 855–870 (2015). https://doi.org/10.1007/s11030-015-9578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9578-2

Keywords

Navigation