Molecular Diversity

, Volume 19, Issue 2, pp 347–356 | Cite as

Multi-output model with Box–Jenkins operators of linear indices to predict multi-target inhibitors of ubiquitin–proteasome pathway

  • Gerardo M. Casañola-Martin
  • Huong Le-Thi-Thu
  • Facundo Pérez-Giménez
  • Yovani Marrero-Ponce
  • Matilde Merino-Sanjuán
  • Concepción Abad
  • Humberto González-Díaz
Full-Length Paper


The ubiquitin–proteasome pathway (UPP) plays an important role in the degradation of cellular proteins and regulation of different cellular processes that include cell cycle control, proliferation, differentiation, and apoptosis. In this sense, the disruption of proteasome activity leads to different pathological states linked to clinical disorders such as inflammation, neurodegeneration, and cancer. The use of UPP inhibitors is one of the proposed approaches to manage these alterations. On other hand, the ChEMBL database contains >5,000 experimental outcomes for >2,000 compounds tested as possible proteasome inhibitors using a large number of pharmacological assay protocols. All these assays report a large number of experimental parameters of biological activity like \(EC_{50}, IC_{50}\), percent of inhibition, and many others that have been determined under many different conditions, targets, organisms, etc. Although this large amount of data offers new opportunities for the computational discovery of proteasome inhibitors, the complexity of these data represents a bottleneck for the development of predictive models. In this work, we used linear molecular indices calculated with the software TOMOCOMD-CARDD and Box–Jenkins moving average operators to develop a multi-output model that can predict outcomes for 20 experimental parameters in >450 assays carried out under different conditions. This generated multi-output model showed values of accuracy, sensitivity, and specificity above 70 % for training and validation series. Finally, this model is considered multi-target and multi-scale, because it predicts the inhibition of the UPP for drugs against 22 molecular or cellular targets of different organisms contained in the ChEMBL database.


Ubiquitin–proteasome pathway inhibitors CHEMBL Multi-target Multi-scale and multi-output models Moving averages QSAR 



Casañola-Martin, G. M. thanks the program Estades Temporals per a Investigadors Convidats for a fellowship to research at Valencia University (2013–2014). Le-Thi-Thu, H. gratefully acknowledges the support from the National Vietnam National University, Hanoi. Marrero-Ponce, Y. thanks the International Professor program for a fellowship to work at Cartagena University in the year 2013–2014. Also, thanks to Prof. Aroa Reguero from the Pontifical Catholic University of Ecuador in Esmeraldas (PUCESE) for her help in the review of the manuscript. Finally, the authors also thank the anonymous referees and editor for their useful comments that contributed to the improvement of this work.

Supplementary material

11030_2015_9571_MOESM1_ESM.xlsx (138 kb)
Supplementary material 1 (xlsx 138 KB)
11030_2015_9571_MOESM2_ESM.pdf (83 kb)
Supplementary material 2 (pdf 84 KB)


  1. 1.
    Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87. doi: 10.1038/nrm1552 CrossRefPubMedGoogle Scholar
  2. 2.
    Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY (2012) The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int J Clin Exp Pathol 5:726–738PubMedCentralPubMedGoogle Scholar
  3. 3.
    Zhang J, Wu P, Hu Y (2013) Clinical and marketed proteasome inhibitors for cancer treatment. Curr Med Chem 20:2537–2551. doi: 10.2174/09298673113209990122 CrossRefPubMedGoogle Scholar
  4. 4.
    Pevzner Y, Metcalf R, Kantor M, Sagaro D, Daniel K (2013) Recent advances in proteasome inhibitor discovery. Expert Opin Drug Discov 8:537–568. doi: 10.1517/17460441.2013.780020 CrossRefPubMedGoogle Scholar
  5. 5.
    Heikamp K, Bajorath J (2011) Large-scale similarity search profiling of ChEMBL compound data sets. J Chem Inf Model 51:1831–1839. doi: 10.1021/ci200199u CrossRefPubMedGoogle Scholar
  6. 6.
    Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. doi: 10.1093/nar/gkr777 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Mok NY, Brenk R (2011) Mining the ChEMBL database: an efficient chemoinformatics workflow for assembling an ion channel-focused screening library. J Chem Inf Model 51:2449–2454. doi: 10.1021/ci200260t CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Hu Y, Bajorath J (2010) Molecular scaffolds with high propensity to form multi-target activity cliffs. J Chem Inf Model 50:500–510. doi: 10.1021/ci100059q CrossRefPubMedGoogle Scholar
  9. 9.
    Erhan D, L’Heureux PJ, Yue SY, Bengio Y (2006) Collaborative filtering on a family of biological targets. J Chem Inf Model 46:626–635. doi: 10.1021/ci050367t CrossRefPubMedGoogle Scholar
  10. 10.
    Namasivayam V, Hu Y, Balfer J, Bajorath J (2013) Classification of compounds with distinct or overlapping multi-target activities and diverse molecular mechanisms using emerging chemical patterns. J Chem Inf Model 53:1272–1281. doi: 10.1021/ci400186n CrossRefPubMedGoogle Scholar
  11. 11.
    Tenorio-Borroto E, Garcia-Mera X, Penuelas-Rivas CG, Vasquez-Chagoyan JC, Prado-Prado FJ, Castanedo N, Gonzalez-Diaz H (2013) Entropy model for multiplex drug–target interaction endpoints of drug immunotoxicity. Curr Top Med Chem 13:1636–1649. doi: 10.2174/15680266113139990114 CrossRefPubMedGoogle Scholar
  12. 12.
    Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San FranciscoGoogle Scholar
  13. 13.
    Speck-Planche A, Kleandrova VV, Cordeiro MN (2013) Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals. Bioorg Med Chem 21:2727–2732. doi: 10.1016/j.bmc.2013.03.015 CrossRefPubMedGoogle Scholar
  14. 14.
    Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MN (2012) Chemoinformatics in multi-target drug discovery for anti-cancer therapy: in silico design of potent and versatile anti-brain tumor agents. Anti-Cancer Agent Med Chem 12:678–685. doi: 10.2174/187152012800617722 CrossRefGoogle Scholar
  15. 15.
    Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MN (2012) Chemoinformatics in anti-cancer chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Eur J Pharm Sci 47:273–279. doi: 10.1016/j.ejps.2012.04.012 CrossRefPubMedGoogle Scholar
  16. 16.
    Marrero-Ponce Y, Valdés-Martini JR, Jacas CRG (2012) TOMOCOMD-CARDD. QuBiLS Software QUBILs-MAS. Version 1.0, CAMD-BIR Unit, Universidad Central “Marta Abreu” de Las VillasGoogle Scholar
  17. 17.
    Marrero-Ponce Y, Medina-Marrero R, Castillo-Garit JA, Romero-Zaldivar V, Torrens F, Castro EA (2005) Protein linear indices of the ‘macromolecular pseudograph alpha-carbon atom adjacency matrix’ in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor. Bioorg Med Chem 13:3003–3015. doi: 10.1016/j.bmc.2005.01.062 CrossRefPubMedGoogle Scholar
  18. 18.
    Marrero-Ponce Y, Castillo-Garit JA, Torrens F, Romero-Zaldivar V, Castro E (2004) Atom, atom-type, and total linear indices of the “molecular pseudograph’s atom adjacency matrix”: application to QSPR/QSAR studies of organic compounds. Molecules 9:1100–1123. doi: 10.3390/91201100 CrossRefGoogle Scholar
  19. 19.
    Marrero-Ponce Y, Medina-Marrero R, Martinez Y, Torrens F, Romero-Zaldivar V, Castro EA (2006) Non-stochastic and stochastic linear indices of the molecular pseudograph’s atom adjacency matrix: a novel approach for computational -in silico- screening and “rational” selection of new lead antibacterial agents. J Mol Mod 12:255–271. doi: 10.1007/s00894-005-0024-8 CrossRefGoogle Scholar
  20. 20.
    Rescigno A, Casañola-Martin GM, Sanjust E, Zucca P, Marrero-Ponce Y (2011) Vanilloid derivatives as tyrosinase inhibitors driven by virtual screening-based QSAR models. Drug Test Anal 3:176–181. doi: 10.1002/dta.187 CrossRefPubMedGoogle Scholar
  21. 21.
    Vega MC, Montero-Torres A, Marrero-Ponce Y, Rolón M, Gómez-Barrio A, Escario JA, Arán VJ, Nogal JJ, Meneses-Marcel A, Torrens F (2006) New ligand-based approach for the discovery of antitrypanosomal compounds. Bioorg Med Chem Lett 16:1898–1904. doi: 10.1016/j.bmcl.2005.12.087 CrossRefPubMedGoogle Scholar
  22. 22.
    Brito-Sánchez Y, Castillo-Garit JA, Le-Thi-Thu H, González-Madariaga Y, Torrens F, Marrero-Ponce Y, Rodríguez-Borges JE (2013) Comparative study to predict toxic modes of action of phenols from molecular structures. SAR QSAR Environ Res 24:235–251. doi: 10.1080/1062936x.2013.766260 CrossRefPubMedGoogle Scholar
  23. 23.
    Marrero-Ponce Y, Castillo-Garit JA, Nodarse D (2005) Linear indices of the ‘macromolecular graph’s nucleotides adjacency matrix’ as a promising approach for bioinformatics studies. Part 1: prediction of paromomycin’s affinity constant with HIV-1 psi-RNA packaging region. Bioorg Med Chem 13:3397–3404. doi: 10.1016/j.bmc.2005.03.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Marrero-Ponce Y, Medina-Marrero R, Castillo-Garit JA, Romero-Zaldivar V, Torrens F, Castro EA (2005) Protein linear indices of the ‘macromolecular pseudograph \(\alpha \)-carbon atom adjacency matrix’ in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor. Bioorg Med Chem 13:3003–3015. doi: 10.1016/j.bmc.2005.01.062 CrossRefPubMedGoogle Scholar
  25. 25.
    Luan F, Cordeiro MN, Alonso N, Garcia-Mera X, Caamano O, Romero-Duran FJ, Yanez M, Gonzalez-Diaz H (2013) TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases. Bioorg Med Chem 21:1870–1879. doi: 10.1016/j.bmc.2013.01.035 CrossRefPubMedGoogle Scholar
  26. 26.
    Marzaro G, Chilin A, Guiotto A, Uriarte E, Brun P, Castagliuolo I, Tonus F, Gonzalez-Diaz H (2011) Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur J Med Chem 46:2185–2192. doi: 10.1016/j.ejmech.2011.02.072 CrossRefPubMedGoogle Scholar
  27. 27.
    Alonso N, Caamano O, Romero-Duran FJ, Luan F, Dias Soeiro Cordeiro MN, Yanez M, Gonzalez-Diaz H, Garcia-Mera X (2013) Model for high-throughput screening of multi-target drugs in chemical neurosciences; synthesis, assay and theoretic study of rasagiline carbamates. ACS Chem Neurosci 4:1393–1403. doi: 10.1021/cn400111n CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano HS, Morales A, Castanedo N, Ibarra-Velarde F, Huesca-Guillen A, Sanchez AM, Torrens F, Castro EA (2005) Atom, atom-type and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic. Bioorg Med Chem 13:1005–1020. doi: 10.1016/j.bmc.2004.11.040 CrossRefPubMedGoogle Scholar
  29. 29.
    Marrero-Ponce Y, Machado-Tugores Y, Pereira DM, Escario JA, Barrio AG, Nogal-Ruiz JJ, Ochoa C, Aran VJ, Martinez-Fernandez AR, Sanchez RN, Montero-Torres A, Torrens F, Meneses-Marcel A (2005) A computer-based approach to the rational discovery of new trichomonacidal drugs by atom-type linear indices. Curr Drug Discov Technol 2:245–265. doi: 10.2174/157016305775202955 CrossRefPubMedGoogle Scholar
  30. 30.
    Concu R, Dea-Ayuela MA, Perez-Montoto LG, Prado-Prado FJ, Uriarte E, Bolas-Fernandez F, Podda G, Pazos A, Munteanu CR, Ubeira FM, Gonzalez-Diaz H (2009) 3D entropy and moments prediction of enzyme classes and experimental–theoretic study of peptide fingerprints in Leishmania parasites. Biochim Biophys Acta 1794:1784–1794. doi: 10.1016/j.bbapap.2009.08.020 CrossRefPubMedGoogle Scholar
  31. 31.
    Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MN (2011) Multi-target drug discovery in anti-cancer therapy: fragment-based approach toward the design of potent and versatile anti-prostate cancer agents. Bioorg Med Chem 19:6239–6244. doi: 10.1016/j.bmc.2011.09.015 CrossRefPubMedGoogle Scholar
  32. 32.
    Tenorio-Borroto E, Rivas CGP, Chagoyan JCV, Castanedo N, Prado-Prado FJ, Garcia-Mera X, Gonzalez-Diaz H (2012) ANN multiplexing model of drugs effect on macrophages; theoretical and flow cytometry study on the cytotoxicity of the anti-microbial drug G1 in spleen. Bioorg Med Chem. doi:  10.1016/j.bmc.2012.07.020
  33. 33.
    Hill T, Lewicki P (2006) Statistics: methods and applications: a comprehensive reference for science, industry and data mining. StatSoft, TulsaGoogle Scholar
  34. 34.
    StatSoft. Inc. (2002) STATISTICA (data analysis software system), version 6.0Google Scholar
  35. 35.
    Tabachnick BG, Fidell LS (1996) Using multivariate statistics. HarperCollins College, NewYorkGoogle Scholar
  36. 36.
    Duart MJ, García-Domenech R, Anton-Fos GM, Galvez J (2001) Optimization of a mathematical topological pattern for the prediction of antihistaminic activity. J Comput Aided Mol Des 15:561–572. doi: 10.1023/A:1011115824070 CrossRefPubMedGoogle Scholar
  37. 37.
    Prado-Prado FJ, Escobar M, García-Mera X (2013) Review of bioinformatics and theoretical studies of acetylcholinesterase inhibitors. Curr Bioinform 8:496–510. doi: 10.2174/1574893611308040012 CrossRefGoogle Scholar
  38. 38.
    García-Domenech R, Zanni R, Galvez-Llompart M, De Julián-Ortiz JV (2013) Modeling anti-allergic natural compounds by molecular topology. Comb Chem High Throughput Screen 16:628–635. doi: 10.2174/1386207311316080005
  39. 39.
    Helguera AM, Pérez-Garrido A, Gaspar A, Reis J, Cagide F, Vina D, Cordeiro MNDS, Borges F (2013) Combining QSAR classification models for predictive modeling of human monoamine oxidase inhibitors. Eur J Med Chem 59:75–90. doi: 10.1016/j.ejmech.2012.10.035
  40. 40.
    Mai Q (2013) A review of discriminant analysis in high dimensions. Wiley Interdisciplin Rev Computat Statist 5:190–197. doi: 10.1002/wics.1257 CrossRefGoogle Scholar
  41. 41.
    StatSoft Inc. (2001) STATISTICA (data analysis software system) vs 6.0. StatSoft Inc., TulsaGoogle Scholar
  42. 42.
    Gerets HH, Dhalluin S, Atienzar FA (2011) Multiplexing cell viability assays. Methods Mol Biol 740:91–101. doi: 10.1007/978-1-61779-108-6-11 CrossRefPubMedGoogle Scholar
  43. 43.
    Casañola-Martin GM, Le-Thi-Thu H, Marrero-Ponce Y, Castillo-Garit JA, Torrens F, Perez-Gimenez F, Abad C (2014) Analysis of proteasome inhibition prediction using atom-based quadratic indices enhanced by machine learning classification techniques. Lett Drug Des Discov 11:705–711. doi: 10.2174/1570180811666140122001144 CrossRefGoogle Scholar
  44. 44.
    Oprea TI (2002) Current trends in lead discovery: are we looking for the appropiate properties? J Comput Aid Mol Des 16:325–334. doi: 10.1023/A:1020877402759 CrossRefGoogle Scholar
  45. 45.
    Xu J, Hagler A (2002) Chemoinformatics and drug discovery. Molecules 7:566–700. doi: 10.3390/70800566 CrossRefGoogle Scholar
  46. 46.
    Seifert HJM, Wolf K, Vitt D (2003) Virtual high-throughput in silico screening. Biosilico 1:143–149. doi: 10.1016/S1478-5382(03)02359-X CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gerardo M. Casañola-Martin
    • 1
    • 2
    • 3
  • Huong Le-Thi-Thu
    • 4
  • Facundo Pérez-Giménez
    • 2
  • Yovani Marrero-Ponce
    • 5
  • Matilde Merino-Sanjuán
    • 6
    • 7
  • Concepción Abad
    • 1
  • Humberto González-Díaz
    • 8
    • 9
  1. 1.Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaBurjassotSpain
  2. 2.Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de FarmaciaUniversitat de ValènciaValenciaSpain
  3. 3.Faculty of Environmental SciencePontifical University Catholic of Ecuador in Esmeraldas (PUCESE)EsmeraldasEcuador
  4. 4.School of Medicine and PharmacyVietnam National University Hanoi (VNU)HanoiVietnam
  5. 5.Facultad de Química FarmacéuticaUniversidad de CartagenaCartagena de IndiasColombia
  6. 6.Department of Pharmacy and Pharmaceutical TechnologyUniversity of ValenciaValenciaSpain
  7. 7.Institute of Molecular Recognition and Technological Development (IDM), Inter-Universitary Institute from Polytechnic University of Valencia and University of ValenciaValenciaSpain
  8. 8.Department of Organic Chemistry IIUniversity of the Basque Country UPV/EHULeioaSpain
  9. 9.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations