Advertisement

Molecular Diversity

, Volume 19, Issue 3, pp 423–434 | Cite as

Synthesis of C-glycosyl-bis-1,2,3-triazole derivatives from 3,4,6-tri-\(\varvec{O}\)-acetyl-D-glucal

  • Anwar Shamim
  • Frederico B. Souza
  • Gustavo H. G. Trossini
  • Fernando M. Gatti
  • Hélio A. Stefani
Full-Length Paper

Abstract

We have developed an efficient, CuI-catalyzed, microwave-assisted method for the synthesis of bis-1,2,3-triazole derivatives starting from a 3,4,6-tri-\(O\)-acetyl-d-glucal-derived mesylate. This mesylate was obtained from 3,4,6-tri-\(O\)-acetyl-d-glucal through \(C\)-glycosidation, deprotection of acetate groups to alcohols, and selective mesylation of the primary alcohol. This mesylate moiety was then converted to an azide through a microwave-assisted method with good yield. The azide, once synthesized, was then treated with different terminal alkynes in the presence of CuI to synthesize various bis-triazoles in high yields and short reaction times.

Keywords

Microwave d-Glucal Click chemistry \(1{, }2{, }\)3-Triazole Flourescence Ultrasound 

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the São Paulo Research Foundation (FAPESP, Grant 2012/00424-2 and fellowship to FBS 2013/20553-4) and National Council for Scientific and Technological Development (CNPq) for a fellowship (308.320/2010–7 to HAS).

References

  1. 1.
    Kernan MR, Amarquaye A, Chen JL, Chan J, Sesin DF, Parkinson N, Ye Z, Barrett M, Bales C, Stoddart CA, Sloan B, Blanc P, Limbach C, Mrisho S, Rozhon EJ (1998) Antiviral phenylpropanoid glycosides from the medicinal plant Markhamia lutea. J Nat Prod 61:564–570. doi: 10.1021/np9703914 PubMedCrossRefGoogle Scholar
  2. 2.
    Haux J, Klepp O, Spigset O, Tretli S (2001) Digitoxin medication and cancer, case control and internal dose-response studies. BMC Cancer 1:1–11. doi: 10.1186/1471-2407-1-11
  3. 3.
    Belz GG, Breithaupt-Grögler K, Osowski U (2001) Treatment of congestive heart failure—current status of use of digitoxin. Eur J Clin Invest 31:10–17. doi: 10.1111/j.1365-2362.2001.00012.x PubMedCrossRefGoogle Scholar
  4. 4.
    Liu ZJ, Zhou M, Min JM, Zhang LH (1999) Syntheses of \(50-O\)-glycosylnucleosides. Tetrahedron Asymmetry 10:2119–2127. doi: 10.1016/S0957-4166(99)00214-1 CrossRefGoogle Scholar
  5. 5.
    Bussolo VD, Kim YJ, Gin DY (1998) Direct oxidative glycosylations with glycal donors. J Am Chem Soc 120:13515–13516. doi: 10.1021/ja982112k CrossRefGoogle Scholar
  6. 6.
    Toshima K, Tatsuda K (1993) Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem Rev 93:1503–1531. doi: 10.1021/cr00020a006 CrossRefGoogle Scholar
  7. 7.
    Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical-biology applications. Chem Rev 113:4905–4979. doi: 10.1021/cr200409f PubMedCrossRefGoogle Scholar
  8. 8.
    Ferreira SB, Sodero ACR, Cardoso MFC, Lima ES, Kaiser CR, Silva-Jr FP, Ferreira VF (2010) Synthesis, biological activity, and molecular modeling studies of \(1H\)-1,2,3-triazole derivatives of carbohydrates as \(\alpha \)-glucosidases inhibitors. J Med Chem 53:2364–2375. doi: 10.1021/jm901265h PubMedCrossRefGoogle Scholar
  9. 9.
    Wilkinson BL, Innocenti A, Vullo D, Supuran CT, Poulsen SA (2008) Inhibition of carbonic anhydrases with glycosyltriazole benzene sulfonamides. J Med Chem 51:1945–1953. doi: 10.1021/jm701426t PubMedCrossRefGoogle Scholar
  10. 10.
    Gupte A, Boshoff HI, Wilson DJ, Neres J, Labello NP, Somu RV, Xing C, Barry CE, Aldrich CC (2008) Inhibition of siderophore biosynthesis by 2-triazole substituted analogues of \(5^{\prime }-O\)-[\(N\)-(salicyl)sulfamoyl]adenosine: Antibacterial nucleosides effective against Mycobacterium tuberculosis. J Med Chem 51:7495–7507. doi: 10.1021/jm8008037 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Li L, Chang KC, Zhou Y, Shieh B, Ponder J, Abraham AD, Ali H, Snow A, Petrash JM, La Barbera DV (2014) Design of an amide \(N\)-glycoside derivative of \(\beta \)-glucogallin: a stable, potent, and specific inhibitor of aldose reductase. J Med Chem 57:71–77. doi: 10.1021/jm401311d PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    He X-P, Deng Q, Gao L-X, Li C, Zhang W, Zhou Y-B, Tang Y, Shi X-X, Xie J, Li J, Chen G-R, Chen K (2011) Facile fabrication of promising protein tyrosine phosphatase (PTP) inhibitor entities based on [‘]clicked’ serine/threonine-monosaccharide hybrids. Bioorg Med Chem 19:3892–3900. doi: 10.1016/j.bmc.2011.05.049 PubMedCrossRefGoogle Scholar
  13. 13.
    He X-P, Li C, Jin X-P, Song Z, Zhang H-L, Zhu C-J, Shen Q, Zhang W, Sheng L, Shi X-X, Tang Y, Li J, Chen G- R, Xie J (2011) Microwave-assisted construction of triazole-linked amino acid-glucoside conjugates as novel PTP1B inhibitors. New J Chem 35:622–631. doi: 10.1039/c0nj00835d CrossRefGoogle Scholar
  14. 14.
    Lee Y-S, Park SM, Kim HM, Park S-K, Lee K, Lee CW, Kim BH (2009) C5-Modified nucleosides exhibiting anticancer activity. Bioorg Med Chem Lett 19:4688–4691. doi: 10.1016/j.bmcl.2009.06.072 PubMedCrossRefGoogle Scholar
  15. 15.
    Li T, Guo L, Zhang Y, Wang J, Li Z, Lin L, Zhang Z, Li L, Lin J, Zhao W, Li J, Wang PG (2011) Design and synthesis of O-GlcNAcase inhibitors via ‘click chemistry’ and biological evaluations. Carbohyd Res 346:1083–1092. doi: 10.1016/j.carres.2011.03.026 CrossRefGoogle Scholar
  16. 16.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021. doi: 10.1002/1521-3773(20010601)
  17. 17.
    Chowdhury C, Mukherjee S, Das B, Achari B (2009) Expedient and rapid synthesis of 1,2,3-triazolo[5,1-\(c\)]morpholines through palladium-copper catalysis. J Org Chem 74:3612–3615. doi: 10.1021/jo900428j PubMedCrossRefGoogle Scholar
  18. 18.
    Meldal M, Tornoe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015. doi: 10.1021/cr0783479 PubMedCrossRefGoogle Scholar
  19. 19.
    Kalisiak J, Sharpless KB, Fokin VV (2008) Efficient synthesis of 2-substituted-1,2,3-triazoles. Org Lett 10:3171–3174. doi: 10.1021/ol8006748 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G (2005) Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 127:15998–15999. doi: 10.1021/ja054114s PubMedCrossRefGoogle Scholar
  21. 21.
    Feldman AK, Colasson B, Fokin VV (2004) One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org Lett 6:3897–3899. doi: 10.1021/ol048859z PubMedCrossRefGoogle Scholar
  22. 22.
    Chan TR, Hilgraf R, Sharpless KB, Fokin VV (2004) Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org Lett 6:2853–2855. doi: 10.1021/ol0493094 PubMedCrossRefGoogle Scholar
  23. 23.
    Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. doi: 10.1021/jo011148j PubMedCrossRefGoogle Scholar
  24. 24.
    Huisgen R (1961) 1,3-Dipolar cycloadditions. Proc Chem Soc 357–396. doi: 10.1039/PS9610000357
  25. 25.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599. doi: 10.1002/1521-3773(20020715)
  26. 26.
    Hanni KD, Leigh DA (2010) The application of CuAAC ‘click’ chemistry to catenane and rotaxane synthesis. Chem Soc Rev 39:1240–1251. doi: 10.1039/B901974J
  27. 27.
    Golas PL, Matyjaszewski K (2010) Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev 39:1338–1354. doi: 10.1039/B901978M
  28. 28.
    Amblard F, Cho JH, Schinazi RF (2009) Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 109:4207–4220. doi: 10.1021/cr9001462
  29. 29.
    Gramlich PME, Wirges CT, Manetto A, Carell T (2008) Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed 47:8350–8358. doi: 10.1002/anie.200802077 CrossRefGoogle Scholar
  30. 30.
    Reddy YS, Pal APJ, Gupta P, Ansari AA, Vankar YD (2011) Ceric ammonium nitrate-catalyzed azidation of 1,2-anhydro sugars: application in the synthesis of structurally diverse sugar-derived morpholine 1,2,3-triazoles and 1,4-oxazin-2-ones. J Org Chem 76:5972–5984. doi: 10.1021/jo200260w PubMedCrossRefGoogle Scholar
  31. 31.
    Vieira AS, Fiorante PF, Hough TLS, Ferreira FP, Lüdtke DS, Stefani HA (2008) Nucleophilic addition of potassium alkynyltrifluoroborates to d-glucal mediated by \(\text{ BF }_{3}\cdot \text{ OEt }_{2}\): Highly stereoselective synthesis of \(\alpha -C\)-glycosides. Org Lett 10:5215–5218. doi: 10.1021/ol8022177 PubMedCrossRefGoogle Scholar
  32. 32.
    Stefani HA, Silva NCS, Manarin F, Ludtke DS, Zukerman-Schpector J, Madureira LS, Tiekink RTE (2012) Synthesis of 1,2,3-triazolylpyranosides through click chemistry reaction. Tetrahedron Lett 53:1742–1747. doi: 10.1016/j.tetlet.2012.01.102 CrossRefGoogle Scholar
  33. 33.
    Mikula H, Matscheko D, Schwarz M, Hametner C, Frohlich J (2013) Improved and large-scale synthesis of different protected d-glucuronals. Carbohydr Res 370:19–23. doi: 10.1016/j.carres.2013.01.007 PubMedCrossRefGoogle Scholar
  34. 34.
    Torii S, Inokuchi T, Masatsugu Y (1985) A straightforward access to 5-deoxy-D-arabinono-1,4-lactone, a versatile intermediate in the Lauraceae lactones syntheses. Bull Chem Soc Jpn 58:3629–3630. doi: 10.1246/bcsj.58.3629 CrossRefGoogle Scholar
  35. 35.
    Ju Y, Kumar D, Varma RS (2006) Revisiting nucleophilic substitution reactions: microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium. J Org Chem 71:6697–6700. doi: 10.1021/jo061114h PubMedCrossRefGoogle Scholar
  36. 36.
    Pu S, Ding H, Liu G, Zheng C, Xu H (2014) Multiaddressing fluorescence switch based on a new photochromic diarylethene with a triazole-linked rhodamine B unit. J Phys Chem C 118:7010–7017. doi: 10.1021/jp5001495 CrossRefGoogle Scholar
  37. 37.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422. doi: 10.1021/cr068102g PubMedCrossRefGoogle Scholar
  38. 38.
    Ni X-L, Wang S, Zeng X, Tao Z, Yamato T (2011) Pyrene-linked triazole-modified homooxacalix[3]arene: a unique \(C_{3}\) symmetry ratiometric fluorescent chemosensor for \(\text{ Pb }^{2+}\). Org Lett 13:552–555. doi: 10.1021/ol102914t PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anwar Shamim
    • 1
  • Frederico B. Souza
    • 2
  • Gustavo H. G. Trossini
    • 2
  • Fernando M. Gatti
    • 2
  • Hélio A. Stefani
    • 2
  1. 1.Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Farmácia, Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil

Personalised recommendations