Molecular Diversity

, Volume 18, Issue 4, pp 745–757 | Cite as

A green four-component synthesis of zwitterionic alkyl/benzyl pyrazolyl barbiturates and their photophysical studies

  • Manisha Bihani
  • Pranjal P. Bora
  • Ghanashyam Bez
  • Hassan Askari
Full-Length Paper


A novel series of unsymmetrically substituted alkyl/benzyl pyrazolyl barbiturates incorporating highly biologically active pyrazolone and barbiturate moieties was synthesized by four-component reactions of a mixture of ethyl acetoacetate, hydrazine hydrate, aldehydes and barbituric acid/thiobarbituric acid in ethanol without using a catalyst. The photophysical properties of the newly designed alkyl/benzyl pyrazolyl barbiturates were studied, and good quantum yield of some products indicated a definitive scope in the field of biochemical applications. Single-crystal X-ray crystallographic studies revealed that the newly synthesized compounds exist in zwitterionic form. The zwitterionic nature of the new chimera makes them interesting candidates for drug delivery as zwitterionic drugs are known to have highly water soluble properties, specific protein absorption, slow recognition by immune system, slow blood clearance from body and can constantly diffuse and deposit throughout the physiological pH.


Green methodology Four-component synthesis MCRs Alkyl/benzyl pyrazolyl barbiturates  Zwitterionic Photophysical studies Drug delivery 



The analytical services provided by Sophisticated Analytical Instrumentation Facility (SAIF), North Eastern Hill University, Shillong and Dept of Chemistry, Gauhati University, India are highly appreciated.

Supplementary material

11030_2014_9532_MOESM1_ESM.doc (5.4 mb)
Supplementary material 1 (doc 5571 KB)


  1. 1.
    Zhu J (2005) Bienaymé H (2005) Multicomponent reaction. Weinheim, Germany, Wiley- VCHCrossRefGoogle Scholar
  2. 2.
    Tietze LF, Brasche G, Gericke K (2006) Domino reactions in organic synthesis. Eds. Wiley-VCH: Weinheim, GermanyGoogle Scholar
  3. 3.
    Domling U, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. doi: 10.1002/1521-3773(20000915)
  4. 4.
    Rohman MR, Mecadon H, Khan AT, Myrboh B (2012) Synthesis of important \(\beta \)-functionalized 5-methyl-1\(H\)-pyrazol-3-ol derivatives in the presence of \(\gamma \)-alumina catalyst in aqueous medium. Tetrahedron Lett 53:5261–5264. doi:  10.1016/j.tetlet.2012.07.073 CrossRefGoogle Scholar
  5. 5.
    Azzam SHS, Pasha MA (2012) Simple and efficient protocol for the synthesis of novel dihydro-1\(H\)-pyrano[2,3-\(c\)]pyrazol-6-ones via a one-pot four-component reaction. Tetrahedron Lett 53:6834–6837. doi:  10.1016/j.tetlet.2012.10.025 CrossRefGoogle Scholar
  6. 6.
    Ablajan K, Liju W, Tuoheti A, Kelim Y (2012) An efficient four-component, one-pot synthesis of 6-Amino-4-Aryl-3- Methyl-2,4-Dihydropyrano[2,3-C]Pyrazole-5-Carbonitriles under phase- transfer catalyst. Lett Org Chem 9:639–643. doi: 10.2174/157017812803521135 CrossRefGoogle Scholar
  7. 7.
    Franciso F, Govianni G, Franciso R (2005) Reverse regioselection in the synthesis of spiropyrazolobarbiturates using C-Br and C-H nitrilimines. Synlett 1:125–126. doi: 10.1055/s-2004-836046 Google Scholar
  8. 8.
    Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PSR, Chang SL, Lotti VJ, Cerino DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirshfield J (1998) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2346. doi: 10.1021/jm00120a002 CrossRefGoogle Scholar
  9. 9.
    Poupaert J, Carato P, Colacino E (2005) 2(3H)-Benzoxazolone and bioisosters as ”privileged scaffold” in the design of pharmacological probes. Curr Med Chem 12:877–885. doi: 10.2174/0929867053507388 PubMedCrossRefGoogle Scholar
  10. 10.
    Brunton LL, Lazo JS, Parker KL, Buxton I, Blumenthal D (2006) Goodman and Gilman’s The pharmacological basis of therapeutics. 11th eds, The McGraw- Hill Companies IncGoogle Scholar
  11. 11.
    Johns MW (1975) Sleep and hypnotic drugs. Drugs 9:448–478. doi: 10.2165/00003495-197509060-00004 PubMedCrossRefGoogle Scholar
  12. 12.
    Uhlmann C, Froscher W (2009) Low risk of development of substance dependence for barbiturates and clobazam prescribed as antiepileptic drugs: results from a questionnaire study. CNS Neurosci Ther 15:24–31. doi: 10.1111/j.1755-5949.2008.00073.x PubMedCrossRefGoogle Scholar
  13. 13.
    Olin BR (1993) Central nervous system drugs, sedatives and hypnotics, barbiturates. Facts and Comparisons, In Facts and Comparisons Drug Information, St. Louis, MO, p 1398Google Scholar
  14. 14.
    Sriram D, Bal TR, Yogeeswari P (2005) Aminopyrimidinimino isatin analogues: Design of novel nonnucleoside HIV-1 reverse transcriptase inhibitors with broadspectrum chemotherapeutic properties. J Pharm Pharmaceut Sci 8:565–577. doi: 10.1016/j.jcis.2004.09.015 Google Scholar
  15. 15.
    Grams F, Brandstetter H, DAlò S, Geppert D, Krell H-W, Leinert H, Livi V, Menta E, Oliva A, Zimmermann G (2001) Pyrimidine-2,4,6-Triones: a new effective and selective class of matrix metalloproteinase inhibitors. Biol Chem 382:1277–1285. doi: 10.1515/BC.2001.159 PubMedCrossRefGoogle Scholar
  16. 16.
    Liu M, Cao D, Russell R, Handschumacher RE, Pizzorno G (1998) Expression, characterization, and detection of human uridine phosphorylase and identification of variant uridine phosphorolytic activity in selected human tumors. Cancer Res 58:5418– 5424Google Scholar
  17. 17.
    Goekjian PG, Jirousek MR (1999) Protein kinase C in the treatment of disease: signal transduction pathways, inhibitors, and agents in development. Curr Med Chem 6:877–903PubMedGoogle Scholar
  18. 18.
    Gruber P, Rechfeld F, Kirchmair J, Hauser N, Boehler M, Garczarczyk D, Langer T, Hofmann J (2011) Barbituric acid derivative BAS 02104951 inhibits PKC\(\upvarepsilon \), PKC\(\upeta \), PKC\(\upvarepsilon \)/RACK2 interaction, Elk-1 phosphorylation in HeLa and PKC\(\upvarepsilon \) and \(\upeta \) translocation in PC3 cells following TPA-induction. J Biochem 149:331–336. doi:  10.1093/jb/mvq147 PubMedCrossRefGoogle Scholar
  19. 19.
    Tripathy R, McHugh RJ, Ghose AK, Ott GR, Angeles TS, Albom MS, Huang Z, Aimone LD, Cheng M, Dorsey BD (2011) Pyrazolone-based anaplastic lymphoma kinase (ALK) inhibitors: control of selectivity by a benzyloxy group. Bioorg Med Chem Lett 21:7261–7264. doi: 10.1016/j.bmcl.2011.10.055 PubMedCrossRefGoogle Scholar
  20. 20.
    Liu L, Norman MH, Lee M, Xi N, Siegmund A, Boezio AA, Booker S, Choquette D, D’Angelo ND, Germain J, Yang K, Yang Y, Zhang Y, Bellon SF, Whittington DA, Harmange J-C, Dominguez C, Kim T-S, Dussault I (2012) Structure-based design of novel class ii c-met inhibitors: 2. sar and kinase selectivity profiles of the pyrazolone series. J Med Chem 55:1868–1897. doi: 10.1021/jm201331s PubMedCrossRefGoogle Scholar
  21. 21.
    Guckian K, Carter MBE, Lin Y-S, Choi M, Sun L, Boriack-Sjodin PA, Chuaqui C, Lane B, Cheung K, Ling L, Lee W-C (2010) Pyrazolone based TGFbetaR1 kinase inhibitors. Bioorg Med Chem Lett 20:326–329. doi: 10.1016/j.bmcl.2009.10.108 PubMedCrossRefGoogle Scholar
  22. 22.
    Tripathy R, Ghose A, Singh J, Bacon ER, Angeles TS, Yang SX, Albom MS, Aimone LD, Herman JL, Mallamo JP (2007) An easy direct arylation of 5-pyrazolones. Bioorg Med Chem Lett 17:1793–1798. doi: 10.1016/j.bmcl.2006.12.054 PubMedCrossRefGoogle Scholar
  23. 23.
    Ray NC, Clark RD, Clark DE, Williams K, Hickin HG, Crackett PH, Dyke HJ, Lockey PM, Wong M, Devos R, White A, Belanoff JK (2007) Discovery and optimization of novel, non-steroidal glucocorticoid receptor modulators. Bioorg Med Chem Lett 17:4901–4905. doi: 10.1016/j.bmcl.2007.06.036 PubMedCrossRefGoogle Scholar
  24. 24.
    Naguib FNM, Levesque DL, Wang E-C, Panzica RP, El kouni MH (1993) 5-Benzylbarbituric acid derivatives, potent and specific inhibitors of uridine phosphorylase. Biochem Pharmacol 30:1273–1283. doi: 10.1016/0006-2952(93)90477-E CrossRefGoogle Scholar
  25. 25.
    Levesque DL, Wang E-C, Wei D-C, Kouni EMH, Naguib FNM (1993) Synthesis of a new class of uridine phosphorylase inhibitors. J Heterocycl Chem 30:1399–1404. doi: 10.1002/jhet.5570300537 CrossRefGoogle Scholar
  26. 26.
    Oliva A, De Cillis G, Grams F, Livi V, Zimmerman G, Menta E, Krell HW (2002) Barbituric acid derivatives with antimetastatic and antitumor activity. US Patent 6, 335, 332, B1Google Scholar
  27. 27.
    Ashkinazi RI (1999) Salts of 5,5’-arylidenebis[barbituric acids] and 5,5’-arylidenebis[2-thiobarbituric acids] having antibacterial, antichlamydial, antiviral and immunomodulating activity. PCT Int Patent WO 9925699(A1):19990527Google Scholar
  28. 28.
    Neumann DM, Jursic BS, Morgan LR (2003) Design, synthesis, and spectroscopic analysis of potential anticancer compounds exhibiting immune modulating properties. Abstracts of Papers, \(225^{{\rm th}}\) ACS National Meeting, New Orleans, LA, US, 2003Google Scholar
  29. 29.
    Oliva A, De Cillis G, Grams F, Livi V, Zimmermann G, Menta E, Krell H-W (1998) Preparation of barbituric acid derivatives with antimetastatic and antitumor activity. PCT Int Appl WO 9858925(A1):19981230Google Scholar
  30. 30.
    Nelson DL, Cox M M (2008) Lehninger Principles of Biochemistry, \(5^{{\rm th}}\) ed, MacmillanGoogle Scholar
  31. 31.
    Mazák K, Noszál B (2012) Zwitterions can be predominant in membrane penetration of drugs: experimental proof. J Med Chem 55:6942–6947. doi: 10.1021/jm3007992 PubMedCrossRefGoogle Scholar
  32. 32.
    Zimmnitsky DS, Yurkshtovich TL, Bychkovsky PM (2006) Adsorption of zwitterionic drugs onto oxidized cellulose. J Colloid Interface Sci 295, 33–40. doi: 10.1016/j.jcis.2005.07.058
  33. 33.
    Hirano T, Yasuda S, Osaka Y, Kobayashi M, Itagaki S, Iseki K (2006) Mechanism of the inhibitory effect of zwitterionic drugs (levofloxacin and grepafloxacin) on carnitine transporter (OCTN2) in Caco-2 cells. Biochim Biophys Acta 1758:1743–1750. doi: 10.1016/j.bbamem.2006.07.002 PubMedCrossRefGoogle Scholar
  34. 34.
    Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932. doi: 10.1002/adma.200901407 PubMedCrossRefGoogle Scholar
  35. 35.
    Cao ZQ, Yu QM, Xue H, Cheng G, Jiang SY (2010) Nanoparticles for drug delivery prepared from amphiphilic plga zwitterionic block copolymers with sharp contrast in polarity between two blocks. Angew Chem Int Ed 49:3771–3776. doi: 10.1002/anie.200907079
  36. 36.
    Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, Bhattacharya R, Robertson JD, Rotello VM, Reid JM, Mukherjee P (2011) Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 6:e24374. doi: 10.1371/journal.pone.0024374 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Pagliara A, Carrupt PA, Caron G, Gaillard P, Testa B (1997) Lipophilicity Profiles of Ampholytes. Chem Rev 97:3385–3400. doi: 10.1021/cr9601019 PubMedCrossRefGoogle Scholar
  38. 38.
    Moyon NS, Mitra S (2011) Luminol Fluorescence Quenching in Biomimicking Environments: Sequestration of Fluorophore in Hydrophobic Domain. J Phys Chem B 115:10163–10172. doi: 10.1021/jp204424w PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Manisha Bihani
    • 1
  • Pranjal P. Bora
    • 1
  • Ghanashyam Bez
    • 1
  • Hassan Askari
    • 1
  1. 1.Department of ChemistryNorth Eastern Hill UniversityShillongIndia

Personalised recommendations