Molecular Diversity

, Volume 17, Issue 4, pp 641–649 | Cite as

Palladium-catalyzed regioselective synthesis of 2(2\(^{\prime }\)-biphenyl)benzimidazoles through C–H activation

  • Li-Hsun Chen
  • Tz-Yi Wu
  • Vijaykumar Paike
  • Chung-Ming Sun
Full-Length Paper


An efficient palladium-catalyzed strategy through C–H bond activation for the synthesis of 2(2\(^{\prime }\)-biphenyl)-benzimidazoles is reported herein. The regioselective C–C bond formation proceeds in a sealed tube via oxidative C–H activation of ortho-directed 2-aryl-benzimidazole to couple with various iodobenzene analogs in high yields. This arylation exhibited high regioselectivity which is able to increase molecular diversity in difficult functionalized positions of parent molecules. This strategy provides a convenient and simple synthesis of biphenyl heterocyclic compounds with high regioselectivity.

Graphical Abstract


Palladium catalyst C–H activation  C–C bond formation Benzimidazole  Biphenyl heterocycles 



The authors wish to thank the National Science Council of Taiwan for financial support and the authorities of the National Chiao Tung University for providing the laboratory facilities. This study was particularly supported by the “Centre for Bioinformatics Research of Aiming for the Top University Plan” of the National Chiao Tung University and Ministry of Education, Taiwan.

Supplementary material

11030_2013_9460_MOESM1_ESM.pdf (7.1 mb)
Supplementary material 1 (pdf 7253 KB)
11030_2013_9460_MOESM2_ESM.doc (3.3 mb)
Supplementary material 2 (doc 3376 KB)


  1. 1.
    Yu JQ, Shi ZJ (2010) C-H activation. Top Curr Chem Springer Berlin Heidelberg 292: xi-xiii. doi: 10.1007/978-3-642-12356-6
  2. 2.
    Gunay A, Theopold KH (2010) C–H bond activations by metal oxo compounds. Chem Rev 110:1060–1081. doi: 10.1021/cr900269x PubMedCrossRefGoogle Scholar
  3. 3.
    Ackermann L (2011) Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem Rev 111:1315–1345. doi: 10.1021/cr100412j PubMedCrossRefGoogle Scholar
  4. 4.
    Alberico D, Scott ME, Lautens M (2007) Aryl–aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev 107: 174–238. doi: 10.1021/cr0509760 PubMedCrossRefGoogle Scholar
  5. 5.
    Chen X, Engle KM, Wang DH, Yu JQ (2009) Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115. doi: 10.1002/anie.200806273 CrossRefGoogle Scholar
  6. 6.
    Cardenas DJ, Martin-Matute B, Echavarren AM (2006) Aryl transfer between Pd(II) centers or Pd(IV) intermediates in Pd-catalyzed domino reactions. J Am Chem Soc 128:5033–5040. doi: 10.1021/ja056661j PubMedCrossRefGoogle Scholar
  7. 7.
    Corbet JP, Mignani G (2006) Selected patented cross-coupling reaction technologies. Chem Rev 106:2651–2710. doi: 10.1021/cr0505268 PubMedCrossRefGoogle Scholar
  8. 8.
    Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111:1417–1492. doi: 10.1021/cr100327p PubMedCrossRefGoogle Scholar
  9. 9.
    Ritleng V, Sirlin C, Pfeffer M (2002) Ru-, Rh-, and Pd-catalyzed C–C bond formation involving C–H activation and addition on unsaturated substrates?: reactions and mechanistic aspects. Chem Rev 102:1731–1770. doi: 10.1021/cr0104330 PubMedCrossRefGoogle Scholar
  10. 10.
    Sun CL, Li BJ, Shi ZJ (2011) Direct C–H transformation via iron catalysis. Chem Rev 111:1293–1314. doi: 10.1021/cr100198w PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang J, Yang Q, Zhu Z, Yuan ML, Fu HY, Zheng XL, Chen H, Li RX (2012) Acetamide as cocatalyst for the nitrogen-directed coupling of arenes with aryl chlorides through ruthenium-catalyzed C–H activation. Eur J Org Chem 6702–6706. doi: 10.1002/ejoc.201201127
  12. 12.
    Daugulis O, Zaitsev VG (2005) Anilide ortho-arylation by using C–H activation methodology. Angew Chem Int Ed 44:4046–4048. doi: 10.1002/anie.200500589 CrossRefGoogle Scholar
  13. 13.
    Rousseaux S, Gorelsky S, Chung BKW, Fagnou K (2010) Investigation of the mechanism of C(sp\(^{3})\)–H bond cleavage in Pd(0)-catalyzed intramolecular alkane arylation adjacent to amides and sulfonamides. J Am Chem Soc 132:10692–10705. doi:  10.1021/ja103081n PubMedCrossRefGoogle Scholar
  14. 14.
    Wang GW, Yuan TT, Wu XL (2008) Direct ortho-acetoxylation of anilides via palladium-catalyzed sp\(^{2}\) C–H bond oxidative activation. J Org Chem 71:4717–4720. doi:  10.1021/jo8003088 CrossRefGoogle Scholar
  15. 15.
    Dupont J, Consorti CS, Spencer J (2005) The potential of palladacycles?: more than just precatalysts. Chem Rev 105:2527–2572. doi: 10.1021/cr030681r PubMedCrossRefGoogle Scholar
  16. 16.
    Yang S, Li B, Wan X, Shi Z (2007) Ortho arylation of acetanilides via Pd(II)-catalyzed C–H functionalization. J Am Chem Soc 129:6066–6067. doi: 10.1021/ja070767s PubMedCrossRefGoogle Scholar
  17. 17.
    Chen X, Goodhue CE, Yu JQ (2008) Palladium-catalyzed alkylation of sp\(^{2}\) and sp\(^{3}\) C–H bonds with methylboroxine and alkylboronic acids?: two distinct C–H activation pathways. J Am Chem Soc 128:12634–12635. doi:  10.1021/ja0646747 CrossRefGoogle Scholar
  18. 18.
    Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem Rev 110: 1147–1169. doi: 10.1021/cr900184e PubMedCrossRefGoogle Scholar
  19. 19.
    Ozkay Y, Tunali Y, Karaca H, Isikdag I (2010) Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazones moiety. Eur J Med Chem 45:3293–3298. doi: 10.1016/j.ejmech.2010.04.012 PubMedCrossRefGoogle Scholar
  20. 20.
    Rewcastle GW, Gamage SA, Flanagan JU, Frederick R, Denny WA, Baguley BC, Kestell P, Singh R, Kendall JD, Marshall ES, Lill CL, Lee WJ, Kolekar S, Buchanan CM, Jamieson SMF, Shepherd PR (2011) Synthesis and biological evaluation of novel analogues of the pan class I phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(difluoromethyl)-1-[4,6-di (4-morpholinyl)-1,3,5-triazin-2-yl]-1\(H\)-benzimidazole (ZSTK474). J Med Chem 54:7105–7126. doi: 10.1021/jm200688y Google Scholar
  21. 21.
    Anthony NJ, Gomez RP, Stokker GE, Wai JS, Williams TM, Halczenko W, Hutchinson JH, Young SD, Solinsky KM (2000) US Patent 00608070AGoogle Scholar
  22. 22.
    Charton J, Girault-Mizzi S, Debreu-Fontaine MA, Foufelle F, Hainault I, Bizot-Espiard JG, Caignard DH, Sergheraert C (2006) Synthesis and biological evaluation of benzimidazole derivatives as potent AMP-activated protein kinase activators. Bioorg Med Chem 14:4490–4518. doi: 10.1016/j.bmc.2006.02.028 PubMedCrossRefGoogle Scholar
  23. 23.
    Tyagarajan S, Chakravarty PK, Zhou B, Fisher MH, Wyvratt MJ, Lyons K, Klatt T, Li X, Kumar S, Williams B, Felix J, Priest BT, Brochu RM, Warren V, Smith M, Garcia M, Kaczorowski GJ, Martin WJ, Abbadie C, McGowan E, Jochnowitz N, Parsons WH (2010) Substituted biaryl oxazoles, imidazoles, and thiazoles as sodium channel blockers. Bioorg Med Chem Lett 20:5536–5540. doi: 10.1016/j.bmcl.2010.07.064 PubMedCrossRefGoogle Scholar
  24. 24.
    Benson SC, Pershadsingh H, Ho C, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of Telmisartan as a unique angiotensin II receptor antagonist with selective PPAR-modulating activity. Hypertension 43: 993–1002. doi: 10.1161/01.HYP.0000123072.34629.57 PubMedCrossRefGoogle Scholar
  25. 25.
    Kubo K, Kohara Y, Imamiya E, Sugiura Y, Inada Y, Furukawa Y, Nishikawa K, Naka T (1993) Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazolecarboxylic acids. J Med Chem 36:2182–2195. doi: 10.1021/jm00067a016 Google Scholar
  26. 26.
    Bali A, Bansal Y, Sugumaran M, Saggu JS, Balakumar P, Kaur G, Bansal G, Sharma A, Singh M (2005) Design, synthesis, and evaluation of novelly substituted benzimidazole compounds as angiotensin II receptor antagonists. Bioorg Med Chem Lett 15:3962–3965. doi: 10.1016/j.bmcl.2005.05.054 Google Scholar
  27. 27.
    Kim Y, Kumar MR, Park N, Heo Y, Lee S (2011) Copper-catalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C–N bond formation. J Org Chem 76:9577–9583. doi: 10.1021/jo2019416 PubMedCrossRefGoogle Scholar
  28. 28.
    Rosenberg AJ, Zhao J, Clark DA (2012) Synthesis of imidazo[4, 5-b]pyridines and imidazo[4,5-b]pyrazines by palladium catalyzed amidation of 2-chloro-3-aminoheterocycles. Org Lett 14: 1764–1767. doi: 10.1021/ol300359s Google Scholar
  29. 29.
    Bellina F, Cauteruccio S, Rossi R (2006) Palladium- and copper-mediated direct C-2 arylation of azoles-including free (NH)-imidazole, -benzimidazole and -indole - under base-free and ligandless conditions. Eur J Org Chem 1379–1382. doi: 10.1002/ejoc.200500957
  30. 30.
    Charton J, Girault-Mizzi S, Sergheraert C (2005) Conversion of sterically hindered diacylated 1,2-phenylenediamines into 2-substituted benzimidazoles. Chem Pharm Bull 35: 492–497Google Scholar
  31. 31.
    Stibrany RT, Lobanov MV, Schugar HJ, Potenza JA (2004) A geometrically constraining bis(benzimidazole) ligand and its nearly tetrahedral complexes with Fe(II) and Mn(II). Inorg Chem 43:1472–1480. doi: 10.1021/ic030180o PubMedCrossRefGoogle Scholar
  32. 32.
    Wang R, Lu XX, Yu XQ, Shi L, Sun Y (2007) Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. J Mol Catal A 266:198–201. doi: 10.1016/j.molcata.2006.04.071 CrossRefGoogle Scholar
  33. 33.
    Blettner CG, Konig WA, Rühter G, Stenzel W, Schotten T (1999) Parallel synthesis of polyethylene glycol supported biaryl benzimidazoles and imidazopyridines. Synlett 3:307–310CrossRefGoogle Scholar
  34. 34.
    Miyamura C, Tsurugi H, Satoh T, Miura M (2008) Rhodium-catalyzed regioselective arylation of phenylazoles and related compounds with arylboron reagents via C–H bond cleavage. J Organomet Chem 693:2438–2442. doi: 10.1016/j.jorganchem.2008.04.029 CrossRefGoogle Scholar
  35. 35.
    Peng J, Shang G, Chen C, Miao Z, Li B (2013) Nucleophilic addition of benzimidazoles to alkynyl bromides/palladium-catalyzed intramolecular C–H vinylation: synthesis of benzo[4,5]imidazo[2,1-a]isoquinolines. J Org Chem 78:1242–1248. doi: 10.1021/jo302471z PubMedCrossRefGoogle Scholar
  36. 36.
    Yellol GS, Chung TW, Sun CM (2010) Novel cyclization of bis-boc-guanidines: expeditive traceless synthesis of 1,3,5-oxadiazinones under microwave conditions. Chem Commun 46:9170–9172. doi: 10.1039/c0cc03519j CrossRefGoogle Scholar
  37. 37.
    Chen CH, Yellol GS, Lin PT, Sun CM (2011) Base-catalyzed Povarov reaction: an unusual [1,3] sigmatropic rearrangement to dihydropyrimidobenzimidazoles. Org Lett 13:5120–5123. doi: 10.1021/ol201985p PubMedCrossRefGoogle Scholar
  38. 38.
    Bancroft DP, Cotton A, Verbruggen M (1989) Trans-(dimethyl sulfoxide-O) (dimethyl sulfoxide-S) bis(trifluoroacetato)palladium(II); alternative ligation modes of an ambidentate ligand. Acta Crystallogr C 45:1289–1292. doi: 10.1107/S0108270189001459 Google Scholar
  39. 39.
    Lirag RC, Ley HTM, Miljanic OS (2013) L-shaped benzimidazole fluorophores: synthesis, characterization and optical response to bases, acids and anions. Chem Commun 49:4304–4306. doi: 10.1039/c2cc37120k Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Li-Hsun Chen
    • 1
  • Tz-Yi Wu
    • 1
  • Vijaykumar Paike
    • 1
  • Chung-Ming Sun
    • 1
  1. 1.Laboratory of Combinatorial Drug Design, Department of Applied ChemistryNational Chiao Tung UniversityHsin-chuTaiwan

Personalised recommendations