Advertisement

Molecular Diversity

, Volume 17, Issue 4, pp 627–639 | Cite as

Synthesis of spiro[indoline-3,1\(^\prime \)-quinolizines] and spiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinolines] via three-component reactions of azaarenes, acetylenedicarboxylate, and 3-methyleneoxindoles

  • Jing Sun
  • Hui Gong
  • Yan Sun
  • Chao-Guo Yan
Open Access
Full-Length Paper

Abstract

The three-component reactions of substituted pyridines, dimethyl acetylenedicarboxylates, and 3-phenacylideneoxindoles afforded spiro[indoline-3,1\(^\prime \)-quinolizines] in high yields and with high diastereoselectivity. The Diels–Alder reactions of spiro[indoline-3,1\(^\prime \)-quinolizines] with maleic anhydride and \(N\)-phenyl maleimides successfully resulted in polyfunctionalized isoquinolinuclidine derivatives. The similar three-component reactions with quinoline resulted in the novel spiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinolines] in moderate to good yields.

Graphical Abstract

Keywords

Multicomponent reaction MCR  Domino reaction Diels–Alder reaction Spirooxindole Isoquinolinuclidine Spiro[indoline-3\(, \)1\(^\prime \)-quinolizines] 

Introduction

The spirooxindole core is a privileged heterocyclic ring system that is featured in a large number of bioactive naturally occurring alkaloids and medicinally relevant compounds [1, 2, 3, 4, 5]. Due to the exceptional high reactivity of the 3-carbonyl group, 3-methylene and 3-phenacylideneoxindoles have attracted a lot of attention for synthetic reactions, especially multicomponent reactions [6, 7, 8] and catalytic asymmetric reactions [9, 10, 11] in the past few years. As a result, numerous elegant transformations have been developed for the diastereoselective and enantioselective construction of versatile spirooxindole skeletons [12, 13, 14, 15, 16, 17]. For the synthesis of these challenging heterocycles, the 1,4-dipolar cycloaddition of Huisgen 1,4-dipoles, which were generated from reactions of nitrogen heterocycles with electron-deficient alkynes, has proven to be a convenient and efficient synthetic methodology [18, 19]. Nair et al. [20] first reported the three-component reaction of pyridine, dimethyl acetylenedicarboxylate (DMAD), and \(N\)-benzylisatins to give spiro[indololine-3,2\(^\prime \)-pyrido[2,1-b][1,3]oxazine]. Later, Yavari [21] and Nair [22] reported the similar reactions of quinoline and isoquinoline with DMAD and isatins for the preparation of complex spirooxindole derivatives. Shi and co-workers [23] found that the three-component reactions of pyridine, DMAD, and \(N\)-substituted isatylidene derivatives afforded spiro[indoline-3,2-quinolizine] in high yields and with good diastereoselectivities. Recently, we successfully developed an efficient synthetic protocol for dispirooxindole-fused heterocycles via the domino reaction of \(p\)-dimethylaminopyridine and DMAD with two molecules of 3-phenacylideneoxindoles [24]. In order to demonstrate the synthetic utility of this practical method, herein we wish to report the three-component reaction of azaarenes such as substituted pyridines and quinoline with DMAD and 3-phenacylideneoxindoles and 3-ethoxycarbonylmethyleneoxindoles for the synthesis of spiro [indoline-3,1\(^\prime \)-quinolizine] derivatives and their potential applications as effective dienes for Diels–Alder reactions.

Results and discussion

We initiated our studies by evaluating the reactivity of the Huisgen 1,4-dipoles generated from the reaction of alkylpyridines with DMAD. According to our previously established conditions for the reaction of 4-dimethylaminopyridine [24], the three-component reactions of 2-picoline with DMAD and 3-phenacylideneoxindoles in THF at room temperature proceeded very smoothly to give the expected 2\(^\prime \),9a\(^\prime \)-dihydrospiro[indoline-3,1\(^\prime \)-quinolizine] 1a1b in moderate yields (Table 1, entries 1–2). Under similar conditions, the reactions with 3-picoline and 4-picoline gave the corresponding spiro products 1c1h in high yields (Table 1, entries 3–8). When 4-methoxypyridine was utilized in the reactions, much higher yields of spiro compounds 1j1o (Table 1, entries 9–15) were obtained.
Table 1

Synthesis of 2\(^\prime \),9a\(^\prime \)-dihydrospiro[indoline-3,1\(^\prime \)-quinolizine]s 1a1o

1a1o

Entry

Compd.

R

Ar

R\(^\prime \)

R\({^{\prime \prime }}\)

Yield\(^{\mathrm{{a}}}\) (%)

1

1a

2-CH\(_{3}\)

\(p\)-CH\(_{3}\)C\(_{6}\)H\(_{4}\)

H

Bn

66

2

1b

2-CH\(_{3}\)

\(p\)-CH\(_{3}\)C\(_{6}\)H\(_{4}\)

CH\(_{3}\)

n-C\(_{4}\)H\(_{9}\)

53

3

1c

3-CH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

H

Bn

61

4

1d

3-CH\(_{3}\)

\(m\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

F

Bn

58

5

1e

3-CH\(_{3}\)

\(p\)-CH\(_{3}\)C\(_{6}\)H\(_{4}\)

Cl

Bn

62

6

1f

3-CH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

F

n-C\(_{4}\)H\(_{9}\)

74

7

1g

4-CH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

F

n-C\(_{4}\)H\(_{9}\)

77

8

1h

4-CH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

Cl

n-C\(_{4}\)H\(_{9}\)

75

9

1i

4-CH\(_{3}\)O

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

Cl

Bn

89

10

1j

4-CH\(_{3}\)O

\(p\)-CH\(_{3}\)C\(_{6}\)H\(_{4}\)

Cl

Bn

84

11

1k

4-CH\(_{3}\)O

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

F

Bn

91

12

1l

4-CH\(_{3}\)O

\(p\)-CH\(_{3}\)C\(_{6}\)H\(_{4}\)

F

Bn

87

13

1m

4-CH\(_{3}\)O

C\(_{6}\)H\(_{5}\)

F

Bn

81

14

1n

4-CH\(_{3}\)O

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

Cl

n-C\(_{4}\)H\(_{9}\)

93

15

1o

4-CH\(_{3}\)O

\(p\)-CH\(_{3}\)C\(_{6}\)H\(_{4}\)

F

n-C\(_{4}\)H\(_{9}\)

90

Reaction conditions Substituted pyridine (1.2 mmol), DMAD (1.2 mmol) and 3-phenacylideneoxindole (1.0 mmol) in THF (10.0 mL), rt, 6 h

\(^{\mathrm{{a}}}\)Isolated yield

The structures of the prepared 2\(^\prime \),9a\(^\prime \)-dihydrospiro[indoline-3,1\(^\prime \)-quinolizin]-2-ones 1a1n were fully characterized by \(^{1}\)H NMR, \(^{13}\)C NMR, HRMS, and IR. The \(^{1}\)H NMR spectra of the spiro compounds 1a1n usually show one set of signals for the characteristic groups in the molecule, which clearly indicated that only one diastereoisomer existed in each sample. The molecular structures of compounds 1f (Fig. 1), 1h (SPI, Fig. s1), and 1m (SPI, Fig. s2) were successfully confirmed by single-crystal X-ray diffraction. These three molecules (1f, 1h, 1m) have the same stereochemistry. In the newly formed tetrahydropyridyl ring, the two protons at 2- and 4-positions are in cis-orientation. The benzoyl and aryl groups of the oxindole moiety also exist in cis-position. It is reported that the benzoyl group and aryl group of oxindole moiety exist in cis-position in the starting 3-phenacylideneoxindoles [25, 26] indicating that this configuration is expected to be retained in the reaction. Thus, we unambiguously ascertained that compounds 1a1o are the cis-isomers proving that this three-component reaction undergoes with very high diastereoselectivity.
Fig. 1

ORTEP representation of crystal structure of spiro compound 1f

It should be pointed out that spiro compounds 1i1o derived from the reactions with 4-methoxypyridine are not very stable in solution because of the presence of a reactive methyl vinyl ether moiety. The 4-methoxy group could be slowly transformed into the 4-carbonyl group during the purification process when dissolved in THF, DCM, ethyl acetate, and toluene (Scheme 1). The structures of the two spiro compounds 2a2b were successfully characterized via spectroscopic methods, and the structure of spiro compound 2b was also confirmed by X-ray diffraction (SPI, Fig. s3).

Scheme 1

Formation of 2,8\(^\prime \)-dioxo-2\(^\prime \),8\(^\prime \),9\(^\prime \),9a\(^\prime \)-tetrahydrospiro[indoline-3,1\(^\prime \)-quinolizines]

To further demonstrate the substrate scope and the diastereoselectivity of this three-component reaction, quinoline was also utilized in the reaction. The three-component reaction of quinoline, DMAD, and 3-phenacylideneoxindoles in THF usually resulted in a complex mixture. After exploring different solvents, we were pleased to find that the reaction proceeded smoothly in DME to give the desired 3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinolines] 3a3e in moderate yields after thin-layer chromatography (Table 2, entries 1–5). Under similar conditions, the reactions with 3-ethoxycarbonylmethyleneoxindoles afforded the spiro [indoline-3,4\(^\prime \)-pyrido[1,2-a]quinolines] 3f3j with much better yields (Table 2, entries 6–10). The structures of spiro compounds 3a3j were also confirmed using spectroscopic methods and compounds 3e and 3i were further confirmed by X-ray diffraction (Figs. 2, 3, respectively). A stereochemistry similar to that of 1a1o was observed for the spiro compounds 3a3j, in which the two protons at 2- and 4-positions existed in cis-orientation in the newly formed tetrahydropyridyl ring, and the benzoyl group and the aryl group of the oxindole moiety also existed in cis-position. These results also indicate that this three-component reaction is a high diastereoselective reaction.
Fig. 2

X-ray structure of spiro compound 3e

Fig. 3

X-ray structure of spiro compound 3i

Table 2

Synthesis of 3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinolines] 3a3j

3a3j

Entry

Compd.

R

R\(^\prime \)

E

Yield\(^\mathrm{{a}}\) (%)

1

3a

Cl

Bn

C\(_{6}\)H\(_{4}\)CH\(_{3}\)-\(p\)

40

2

3b

Cl

Bn

C\(_{6}\)H\(_{4}\)Cl-\(p\)

52

3

3c

F

Bn

C\(_{6}\)H\(_{5}\)

55

4

3d

F

Bn

C\(_{6}\)H\(_{4}\)Cl-\(p\)

53

5

3e

Cl

n-C\(_{4}\)H\(_{9}\)

C\(_{6}\)H\(_{4}\)OCH\(_{3}\)-\(p\)

60

6

3f

CH\(_{3}\)

Bn

OEt

50

7

3g

H

Bn

OEt

63

8

3h

Cl

Bn

OEt

70

9

3i

Cl

n-Bu

OEt

73

10

3j

F

Bn

OEt

65

Reaction conditions Quinoline (1.5 mmol), DMAD (1.5 mmol), and 3-methyleneoxindole (1.0 mmol) in DME (10.0 mL), rt, 6 h \(^\mathrm{{a}}\)Isolated yield

There is a 1,2-dihydropyridyl moiety in the above-prepared dihydrospiro[indoline-3,1\(^\prime \)-quinolizin]-2-ones 1a1n. 1,2-Dihydropyridine is an effective diene for Diels–Alder reaction to construct versatile bridged heterocyclic compounds [27, 28, 29, 30, 31, 32, 33]. Thus, we proceeded to investigate the role of our spiro compounds 1a1n as dienophiles in Diels–Alder reactions. The reaction of dihydrospiro[indoline-3,1\(^\prime \)-quinolizines] with a slight excess of \(N\)-phenyl maleimides or maleic anhydride proceeded smoothly in refluxing 1,2-dimethoxyethane for 6 h to give the desired 1,4-cycloaddition products 4a4g in satisfactory yields (Table 3). \(^{1}\)H NMR data and single-crystal determination of compound 4d (Fig. 4) indicated that the configuration of previous dihydrospiro[indoline-3,1\(^\prime \)-quinolizine] moiety is retained and the maleimide unit exists in exo-configuration in this Diels–Alder reaction.
Fig. 4

ORTEP representation of crystal structure of spiro compound 4d

Table 3

Diels–Alder reactions of 2\(^\prime \),9a\(^\prime \)-dihydrospiro[indoline-3,1\(^\prime \)-quinolizines]

4a4g

Entry

Compd.

R

Ar

R\(^\prime \)

R\(^{\prime \prime }\)

Z

Yield\(^\mathrm{{a}}\) (%)

1

4a

4-CH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

F

Bn

NC\(_{6}\)H\(_{5}\)

80

2

4b

4-CH\(_{3}\)

\(p\)-CH\(_{3}\)C\(_{6}\)H\(_{4}\)

Cl

Bn

NC\(_{6}\)H\(_{5}\)

77

3

4c

4-CH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

F

n-C\(_{4}\)H\(_{9}\)

NC\(_{6}\)H\(_{4}\)CH\(_{3}\)-\(p\)

72

4

4d

4-CH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

F

n-C\(_{4}\)H\(_{9}\)

NC\(_{6}\)H\(_{4}\)Cl-\(p\)

85

5

4e

3-CH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

F

n-C\(_{4}\)H\(_{9}\)

NC\(_{6}\)H\(_{4}\)Cl-\(p\)

86

6

4f

4-OCH\(_{3}\)

\(p\)-CH\(_{3}\)OC\(_{6}\)H\(_{4}\)

Cl

n-C\(_{4}\)H\(_{9}\)

O

90

7

4g

4-OCH\(_{3}\)

\(p\)-CH\(_{3}\)C\(_{6}\)H\(_{4}\)

F

n-C\(_{4}\)H\(_{9}\)

O

88

Reaction conditions Spiro[indoline-3,1\(^\prime \)-quinolizine] (1.0 mmol) and \(N\)-substituted maleimide or maleic anhydride (1.5 mmol) in DME (10.0 mL), reflux, 12 h

\(^\mathrm{{a}}\) Isolated yield

Conclusion

In summary, an efficient protocol for the synthesis of functionalized spiro[indoline-3,1\(^\prime \)-quinolizine] and spiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinoline] was successfully developed by three-component reactions of nitrogen heterocycles, DMADs, and 3-methyleneoxindoles. This MCR reaction can proceed smoothly under mild conditions to afford complex heterocycles in moderate to good yields and high diastereoselectivities. Furthermore, the prepared spiro[indoline-3,1\(^\prime \)-quinolizines] can undergo Diels–Alder reactions with maleic anhydride and \(N\)-phenyl maleimides to give complex isoquinolinuclidine derivatives. The simplicity of the procedure, readily available substrates, and ease of handling render this protocol applicable for the synthesis of structurally diverse heterocyclic compounds.

Experimental section

General procedure for the three-component reaction of substituted pyridine, DMAD, and 3-phenacylideneoxindoles

A mixture of substituted pyridine (1.2 mmol), DMAD (1.2 mmol, 0.170 g), and 3-phenacylideneoxindole (1.0 mmol) in 10.0 mL of tetrahydrofuran was stirred at room temperature for 6 h. Then, the solvent was removed by evaporation and the residue was subjected to thin-layer chromatography (15 \(\times \) 25 cm SiO\(_{2}\) plate) with a mixture of light petroleum and ethyl acetate (V/V = 2:1) as the developing reagent. The product was separated from silica gel by eluting with ethanol and is pure enough for spectroscopic analysis.

Dimethyl 1-benzyl-6\(^\prime \)-methyl-2\(^\prime \)-(4-methylbenzoyl)-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indoline-3,1\(^\prime \)-quinolizine]-3 \(^\prime \),4\(^\prime \)-dicarboxylate (1a)

Yellow solid, 66 %, m.p. 173–175 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.26 (br s, 2H, ArH), 7.20 (br s, 2H, ArH), 7.15–7.13 (m, 4H, ArH), 7.06 (br s, 2H, ArH), 6.89 (br s, 3H, ArH), 6.58 (br s, 1H, CH), 5.60 (brs, 1H, CH), 5.27 (s, 1H, CH), 4.98 (br s, 1H, CH), 4.61 (br s, 2H, CH), 4.50 (br s, 1H, CH), 3.87 (s, 3H, OCH\(_{3})\), 3.56 (s, 3H, OCH\(_{3})\), 2.32 (s, 3H, CH\(_{3})\), 1.93 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 196.5, 174.2, 166.3, 166.1, 146.7, 143.4, 136.8, 135.1, 134.9, 128.9, 128.6, 128.4, 128.2, 127.4, 127.1, 126.9, 125.4, 124.9, 122.1, 116.1, 113.9, 108.5, 103.1, 66.8, 58.4, 53.3, 52.2, 49.2, 43.9, 21.7, 20.6; IR (KBr) \(\upsilon \): 3447, 2946, 2025, 1732, 1710, 1685, 1655, 1611, 1578, 1489, 1465, 1437, 1405, 1368, 1291, 1232, 1177, 1129, 1080, 1017, 963, 815, 793, 738 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{33}\)N\(_{2}\)O\(_{6}\) ([M+H]\(^{+})\): 589.2347. Found: 589.2350.

Diethyl 1-butyl-5,6\(^\prime \)-dimethyl-2\(^\prime \)-(4-methylbenzoyl)-2-oxo- 2\(^\prime \),9a\(^\prime \)-dihydrospiro[indoline-3,1\(^\prime \)-quinolizine]-3\(^\prime \),4\(^\prime \)- dicarboxylate (1b)

Yellow solid, 53 %, m.p. 161–163 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.39 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.18 (d, \(J\) = 7.2 Hz, 2H, ArH), 7.03–7.01 (m, 2H, ArH), 6.73 (d, \(J\) = 7.8 Hz, 1H, ArH), 6.21 (d, \(J\) = 7.8 Hz, 1H, CH), 5.50–5.47 (m, 1H, CH), 5.23 (s, 1H, CH), 4.93–4.91 (m, 1H, CH), 4.65 (d, \(J\) = 9.6 Hz, 1H, CH), 3.95 (s, 3H, OCH\(_{3})\), 3.39 (s, 3H, OCH\(_{3})\), 3.24–3.21 (m, 1H, CH), 3.08–3.04 (m, 1H, CH), 2.32 (s, 3H, CH\(_{3})\), 2.24 (s, 3H, CH\(_{3})\), 1.67 (s, 3H, CH\(_{3})\), 0.95 (br s, 3H, CH), 0.69 (t, \(J\) = 7.2 Hz, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 196.9, 172.8, 165.1, 164.3, 144.4, 143.2, 139.4, 130.6, 128.9, 128.6, 128.0, 127.8, 127.7, 126.7, 121.1, 121.0, 107.9, 101.9, 63.7, 53.3, 53.0, 51.3, 44.5, 28.4, 21.1, 21.0, 19.4, 13.5; IR (KBr) \(\upsilon \): 3452, 2952, 2869, 2025, 1747, 1698, 1659, 1615, 1582, 1496, 1436, 1362, 1269, 1237, 1151, 1115, 1083, 1048, 936, 866, 827, 779, 740, 701 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{34}\)H\(_{37}\)N\(_{2}\)O\(_{6}\) ([M+H]\(^{+})\): 569.2686. Found: 569.2671.

Dimethyl 1-benzyl-2\(^\prime \)-(4-methoxybenzoyl)-7\(^\prime \)-methyl-2-oxo- 2\(^\prime \),9a\(^\prime \)-dihydrospiro[indoline-3,1\(^\prime \)-quinolizine]-3\(^\prime \),4\(^\prime \)- dicarboxylate (1c)

Yellow solid, 61 %, m.p. 190–192 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.51 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.18 (t, \(J\) = 7.2 Hz, 1H, ArH), 7.11 (t, \(J\) = 7.8 Hz, 4H, ArH), 6.98–6.93 (m, 3H, ArH), 6.81 (d, \(J\) = 7.2 Hz, 2H, ArH), 6.69 (d, \(J\) = 7.8 Hz, 1H, ArH), 6.05 (s, 1H, CH), 5.54 (d, \(J\) = 8.4 Hz, 1H, CH), 5.35 (s, 1H, CH), 4.91–4.90 (m, 2H, CH), 4.64 (d, \(J\) = 15.7 Hz, 1H, CH), 4.49 (d, \(J\) = 15.7 Hz, 1H, CH), 3.95 (s, 3H, OCH\(_{3})\), 3.82 (s, 3H, OCH\(_{3})\), 3.43 (s, 3H, OCH\(_{3})\), 1.43 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 195.8, 174.8, 166.1, 165.3, 163.3, 145.6, 142.6, 135.2, 130.5, 130.4, 128.6, 128.5, 128.2, 127.6, 127.5, 126.9, 125.9, 123.0, 122.5, 116.0, 113.4, 109.5, 108.6, 104.6, 62.7, 55.4, 54.1, 53.4, 51.6, 47.4, 43.9, 17.5; IR (KBr) \(\upsilon \): 3450, 2949, 2843, 2026, 1742, 1708, 1674, 1609, 1582, 1510, 1489, 1464, 1434, 1412, 1380, 1308, 1244, 1172, 1125, 1021, 983, 941, 899, 825, 776, 746 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{33}\)N\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 605.2282. Found: 605.2290.

Dimethyl 1-benzyl-5-fluoro-2\(^\prime \)-(3-methoxybenzoyl)-7\(^\prime \)-methyl-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indo line-3,1\(^\prime \)-quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1d)

Yellow solid, 58 %, m.p. 172–173 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.36 (brs, 1H, ArH), 7.18–7.13 (m, 5H, ArH), 7.05–7.00 (m, 2H, ArH), 6.85 (br s, 3H, ArH), 6.74 (br s, 1H, ArH), 6.11 (s, 1H, CH), 5.59 (br s, 1H,CH), 5.41 (s, 1H, CH), 4.97–4.93 (m, 2H, CH), 4.60 (br s, 1H,CH), 4.48 (br s, 1H,CH), 3.97 (s, 3H, OCH\(_{3})\), 3.73 (s, 3H, OCH\(_{3})\), 3.45 (s, 3H, OCH\(_{3})\), 1.47 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 197.1, 174.4, 165.5 (d, \(J\) = 134.6 Hz), 159.5, 145.7, 138.8, 138.7, 134.9, 129.3, 128.8, 128.5, 127.7, 126.9, 122.5, 120.8, 120.3, 115.7, 115.5 (d, \(J\) = 24.9 Hz), 115.1 (d, \(J\) = 24.3 Hz), 111.5, 109.7, 109.1 (d, \(J\) = 5.7 Hz), 104.3, 62.6, 55.4, 54.4, 53.4, 51.7, 47.9, 44.1, 17.5; IR (KBr) \(\upsilon \): 3451, 2948, 2839, 2025, 1742, 1710, 1612, 1582, 1486, 1452, 1433, 1410, 1342, 1294, 1251, 1194, 1176, 1117, 1050, 1009, 983, 946, 896, 868, 841, 813, 788, 752 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{32}\)FN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 623.2201. Found: 623.2196.

Dimethyl 1-benzyl-5-chloro-7\(^\prime \)-methyl-2\(^\prime \)-(4- methylbenzoyl)-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indo-line-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1e)

Yellow solid, 62 %, m.p. 169–172 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.48 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.24 (d, \(J\) = 7.8 Hz, 3H, ArH), 7.19 (t, \(J\) = 7.2 Hz, 1H, ArH), 7.12–7.09 (m, 3H, ArH), 6.76 (d, \(J\) = 7.2 Hz, 2H, ArH), 6.72 (d, \(J\) = 8.4 Hz, 1H, ArH), 6.11 (s, 1H, CH), 5.59 (d, \(J\) = 9.6 Hz, 1H, CH), 5.42 (s, 1H, CH), 4.96 (s, 1H, CH), 4.91 (d, \(J\) = 9.6 Hz, 1H, CH), 4.64 (d, \(J\) = 15.6 Hz, 1H, CH), 4.45 (d, \(J\) = 15.6 Hz, 1H, CH), 3.97 (s, 3H, OCH\(_{3})\), 3.43 (s, 3H, OCH\(_{3})\), 2.36 (s, 3H, CH\(_{3})\), 1.47 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 196.7, 174.2, 165.9, 165.1, 145.6, 143.7, 141.2, 134.8, 134.7, 129.0, 128.7, 128.6, 128.4, 127.8, 127.6, 126.9, 122.6, 115.5, 109.8, 109.6, 104.6, 62.6, 54.3, 53.5, 51.7, 47.7, 43.9, 21.7, 17.5; IR (KBr) \(\upsilon \): 3446, 3040, 2948, 2853, 2025, 1716, 1680, 1611, 1584, 1482, 1434, 1404, 1371, 1295, 1243, 1178, 1115, 1076, 983, 942, 899, 801, 743, 703 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{32}\)ClN\(_{2}\)O\(_{6}\) ([M+H]\(^{+})\): 623.1957. Found: 623.1958.

Dimethyl 1-butyl-5-fluoro-2\(^\prime \)-(4-methoxybenzoyl)-7\(^\prime \)- methyl-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indo-line-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1f)

Yellow solid, 74 %, m.p. 162–163 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.44 (d, \(J\) = 9.0 Hz, 2H, ArH), 7.09 (td, \(J_{1}\) = 9.0 Hz, \(J_{2}\) = 2.4 Hz, 1H, ArH), 6.90–6.89 (m, 3H, ArH), 6.82 (dd, \(J_{1}\) = 8.7 Hz, \(J_{2}\) = 2.4 Hz, 1H, ArH), 6.09 (s, 1H, CH), 5.62 (d, \(J\) = 9.6 Hz, 1H, CH), 5.28 (s, 1H, CH), 4.92–4.90 (m, 1H, CH), 4.88 (brs, 1H, CH), 3.96 (s, 3H, OCH\(_{3})\), 3.79 (s, 3H, OCH\(_{3})\), 3.42 (s, 3H, OCH\(_{3})\), 3.40–3.36 (m, 1H, CH), 3.25–3.21 (m, 1H, CH), 1.48 (s, 3H, CH\(_{3})\), 0.99–0.91 (m, 3H, CH), 0.79–0.73 (m, 1H, CH), 0.69 (t, \(J\) = 7.2 Hz, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 195.8, 174.0, 165.9, 165.1, 163.3, 158.9 (d, \(J\) = 119.5 Hz), 145.5, 138.9, 130.5, 130.4, 128.2, 127.9, 127.8, 122.5, 115.8, 115.6 (d, \(J\) = 25.2 Hz), 114.9 (d, \(J\) = 23.9 Hz), 113.3, 109.6, 108.1 (d, \(J\) = 8.3 Hz), 104.3, 62.2, 55.3, 54.1, 53.3, 51.6, 47.4, 40.0, 29.1, 20.0, 17.5, 13.6; IR (KBr) \(\upsilon \): 3453, 2955, 2924, 2867, 2025, 1746, 1708, 1680, 1600, 1582, 1490, 1455, 1403, 1368, 1329, 1305, 1262, 1237, 1172, 1107, 1076, 1027, 1000, 981, 952, 895, 849, 815, 758 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{33}\)H\(_{34}\)FN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 589.2358. Found: 589.2353.

Dimethyl 1-butyl-5-fluoro-2\(^\prime \)-(4-methoxybenzoyl)-8\(^\prime \)- methyl-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indo-line-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1g)

Yellow solid, 77 %, m.p. 164–166 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.42 (d, \(J\) = 7.2 Hz, 2H, ArH), 7.08 (br s, 1H, ArH), 6.89 (d, \(J\) = 7.2 Hz, 3H, ArH), 6.79 (d, \(J\) = 7.8 Hz, 1H, ArH), 6.33 (d, \(J\) = 7.2 Hz, 1H, CH), 5.26 (s, 1H, CH), 4.88 (s, 1H, CH), 4.73 (d, \(J\) = 7.2 Hz, 1H, CH), 4.61 (s, 1H, CH), 3.95 (s, 3H, OCH\(_{3})\), 3.79 (s, 3H, OCH\(_{3})\), 3.44 (s, 3H, OCH\(_{3})\), 3.36 (br s, 1H, CH), 3.29 (br s, 1H, CH), 1.38 (s, 3H, CH\(_{3})\), 1.06 (brs, 1H, CH), 0.98–0.97 (m, 2H, CH), 0.86 (brs, 1H, CH), 0.71 (br s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3})\) \(\delta \): 195.9, 174.1, 165.8, 164.9, 163.3, 145.4, 139.0, 132.6, 130.5, 130.4, 128.0, 127.9, 126.6, 115.5 (d, \(J\) = 25.2 Hz), 114.9 (d, \(J\) = 24.3 Hz), 113.6, 113.5, 113.3, 112.1, 110.2, 108.0 (d, \(J\) = 8.3 Hz), 105.8, 104.7, 63.1, 56.9, 55.4, 54.4, 53.4, 51.7, 47.5, 40.0, 29.4, 29.1, 20.8, 20.5, 20.1, 20.0, 13.7; IR (KBr) \(\upsilon \): 3449, 2953, 2927, 2867, 2026, 1734, 1700, 1671, 1595, 1490, 1437, 1377, 1313, 1278, 1245, 1200, 1174, 1141, 1120, 1023, 952, 885, 853, 816, 790, 755, 729 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{33}\)H\(_{34}\)FN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 589.2358. Found: 589.2366.

Dimethyl 1-butyl-5-chloro-2\(^\prime \)-(4-methoxybenzoyl)-8\(^\prime \)- methyl-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indo-line-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1h)

Yellow solid, 75 %, m.p. 168–171 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.43 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.29 (d, \(J\) = 7.8 Hz, 1H, ArH), 7.02 (s, 1H, ArH), 6.90 (t, \(J\) = 8.4 Hz, 3H, ArH), 6.33 (d, \(J\) = 7.8 Hz, 1H, CH), 5.27 (s, 1H, CH), 4.89 (s, 1H, CH), 4.73 (d, \(J\) = 7.2 Hz, 1H, CH), 4.60 (s, 1H, CH), 3.95 (s, 3H, OCH\(_{3})\), 3.79 (s, 3H, OCH\(_{3})\), 3.44 (s, 3H, OCH\(_{3})\), 3.37 (brs, 1H, CH), 3.29–3.26 (m, 1H, CH), 1.38 (s, 3H, CH\(_{3})\), 1.05 (br s, 1H, CH), 0.99–0.95 (m, 2H, CH), 0.86 (br s, 1H, CH), 0.71 (t, \(J\) = 7.2 Hz, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3})\) \(\delta \): 195.7, 173.9, 165.8, 164.9, 163.3, 145.4, 141.6, 132.7, 130.4, 128.4, 127.9, 127.8, 127.7, 126.5, 113.3, 110.1, 108.5, 106.0, 104.7, 63.2, 55.4, 54.4, 53.4, 51.7, 47.5, 39.9, 29.1, 20.8, 20.0, 13.7; IR (KBr) \(\upsilon \): 3456, 3071, 2952, 2869, 2587, 2027, 1742, 1710, 1672, 1605, 1579, 1511, 1483, 1432, 1381, 1324, 1243, 1173, 1127, 1045, 1023, 982, 955, 913, 869, 836, 810, 730 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{33}\)H\(_{34}\)ClN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 605.2062. Found: 605.2067.

Dimethyl 1-benzyl-5-chloro-8\(^\prime \)-methoxy-2\(^\prime \)-(4- methoxybenzoyl)-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro-[indoline-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1i)

Yellow solid, 89 %, m.p. 150.0–150.3 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.54 (d, \(J\) = 7.2 Hz, 2H, ArH), 7.25 (d, \(J\) = 6.6 Hz, 1H, ArH), 7.18 (d, \(J\) = 6.6 Hz, 1H, ArH), 7.13 (br s, 2H, ArH), 7.01 (s, 1H, ArH), 6.97–6.95 (m, 4H, ArH), 6.82 (d, \(J\) = 7.8 Hz, 1H, ArH), 6.43 (d, \(J\) = 7.8 Hz, 1H, CH), 5.36 (s, 1H, CH), 5.05 (s, 1H, CH), 4.66 (d, \(J\) = 7.2 Hz, 1H, CH), 4.60–4.54 (m, 2H, CH\(_{2})\), 3.95 (s, 3H, OCH\(_{3})\), 3.82 (s, 3H, OCH\(_{3})\), 3.77 (brs, 1H, CH), 3.47 (s, 3H, OCH\(_{3})\), 2.93 (s, 3H, OCH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 195.5, 174.5, 165.7, 164.8, 163.5, 153.7, 145.2, 141.4, 135.0, 130.7, 130.6, 130.2, 128.8, 128.6, 128.4, 127.8, 127.7, 127.5, 127.1, 113.5, 113.4, 109.1, 100.2, 83.0, 64.0, 58.4, 55.5, 55.3, 54.1, 53.5, 53.4, 51.9, 47.3, 43.9, 18.4, 15.3; IR (KBr) \(\upsilon \): 3457, 2954, 1745, 1707, 1671, 1628, 1600, 1511, 1484, 1455, 1435, 1377, 1339, 1251, 1226, 1178, 1136, 979, 944, 902, 868, 845, 808, 757 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{32}\)Cl\(_{2}\)N\(_{2}\)O\(_{8}\) ([M+H]\(^{+})\): 655.1842. Found: 655.1841.

Dimethyl 1-benzyl-5-chloro-8\(^\prime \)-methoxy-2\(^\prime \)-(4- methylbenzoyl)-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro-[indoline-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1j)

Yellow solid, 84 %, m.p. 162.3–163.1 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.42 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.27–7.24 (m, 3H, ArH), 7.18 (d, \(J\) = 7.2 Hz, 1H, ArH), 7.14 (t, \(J\) = 7.2 Hz, 2H, ArH), 7.00 (s, 1H, ArH), 6.96 (d, \(J\) = 7.8 Hz, 2H, ArH), 6.82 (d, \(J\) = 8.4 Hz, 1H, ArH), 6.43 (d, \(J\) = 8.4 Hz, 1H, CH), 5.37 (s, 1H, CH), 5.06 (s, 1H, CH), 4.66 (d, \(J\) = 7.2 Hz, 1H, CH), 4.49 (br s, 2H, CH\(_{2})\), 3.95 (s, 3H, OCH\(_{3})\), 3.75 (brs, 1H, CH), 3.48 (s, 3H, OCH\(_{3})\), 2.91 (s, 3H, OCH\(_{3})\), 2.36 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 196.8, 174.4, 173.4, 165.7, 164.8, 153.7, 145.2, 143.7, 141.4, 135.1, 135.0, 134.8, 129.2, 128.9, 128.8, 128.7, 128.5, 128.3, 127.9, 127.8, 127.7, 127.5, 127.3, 126.9, 100.1, 83.0, 63.9, 55.1, 54.0, 53.5, 51.9, 47.8, 43.9, 21.7, 21.6; IR (KBr) \(\upsilon \): 3455, 2945, 1744, 1716, 1672, 1626, 1600, 1480, 1456, 1432, 1388, 1370, 1317, 1246, 1231, 1175, 1135, 1043, 977, 947, 918, 869, 838, 814, 784 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{32}\)ClN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 639.1893. Found: 639.1898.

Dimethyl 1-benzyl-5-fluoro-8\(^\prime \)-methoxy-2\(^\prime \)-(4- methoxybenzoyl)-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro-[indoline-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1k)

Yellow solid, 91 %, m.p. 147.1–148.0 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.54 (d, \(J\) = 8.4 Hz, 2H, ArH), 7.18 (t, \(J\) = 7.2 Hz, 1H, ArH), 7.13 (d, \(J\) = 7.2 Hz, 2H, ArH), 7.04 (t, \(J\) = 8.4 Hz, 1H, ArH), 6.96 (t, \(J\) = 7.8 Hz, 4H, ArH), 6.79–6.78 (m, 2H, ArH), 6.43 (d, \(J\) = 7.8 Hz, 1H, CH), 5.35 (s, 1H, CH), 5.04 (d, \(J\) = 3.0 Hz, 1H, CH), 4.65 (d, \(J\) = 6.6 Hz, 1H, CH), 4.56 (brs, 2H, CH\(_{2})\), 3.95 (s, 3H, OCH\(_{3})\), 3.83 (s, 3H, OCH\(_{3})\), 3.78 (br s, 1H, CH), 3.47 (s, 3H, OCH\(_{3})\), 2.93 (s, 3H, OCH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 195.3, 173.6, 165.0, 164.0, 163.3, 157.9 (d, \(J\) = 236.9 Hz), 153.0, 144.8, 139.1, 135.6, 130.2, 129.6, 129.3, 128.5, 127.4, 127.3, 127.2, 115.1 (d, \(J\) = 23.1 Hz), 114.3 (d, \(J\) = 28.2 Hz), 113.6, 109.4 (d, \(J\) = 6.2 Hz), 106.1, 99.7, 82.8, 63.3, 56.0, 55.5, 54.5, 53.8, 53.4, 51.6, 46.4, 43.0, 18.5; IR (KBr) \(\upsilon \): 3450, 1737, 1641, 1488, 1422, 1369, 1285, 1232, 1187, 1111, 952, 865, 816, 774 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{32}\)FN\(_{2}\)O\(_{8}\) ([M+H]\(^{+})\): 639.2137. Found: 639.2142.

Dimethyl 1-benzyl-5-fluoro-8\(^\prime \)-methoxy-2\(^\prime \)-(4-methylbenzoyl)-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indo line-3,1\(^\prime \)-quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1l)

Yellow solid, 87 %, m.p. 158.5–159.0 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.42 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.24 (t, \(J\) = 7.8 Hz, 2H, ArH), 7.18 (t, \(J\) = 7.2 Hz, 1H, ArH), 7.14 (t, \(J\) = 7.2 Hz, 2H, ArH), 7.06 (t, \(J\) = 8.4 Hz, 1H, ArH), 6.97 (t, \(J\) = 7.2 Hz, 2H, ArH), 6.81–6.77 (m, 2H, ArH), 6.43 (d, \(J\) = 8.4 Hz, 1H, CH), 5.37 (s, 1H, CH), 5.05 (d, \(J\) = 8.4 Hz, 1H, CH), 4.66 (d, \(J\) = 7.8 Hz, 1H, CH), 4.48 (brs, 2H, CH\(_{2})\), 3.95 (s, 3H, OCH\(_{3})\), 3.76 (brs, 1H, CH), 3.48 (s, 3H, OCH\(_{3})\), 2.91 (s, 3H, OCH\(_{3})\), 2.36 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 196.9, 174.6, 165.7, 164.8, 159.0 (d, \(J\) = 240 Hz), 153.6, 145.2, 143.7, 138.8, 135.2 134.8, 128.9, 128.8, 128.3, 127.7, 115.4 (d, \(J\) = 25.4 Hz), 115.1 (d, \(J\) = 23.4 Hz), 108.7 (d, \(J\) = 7.5 Hz), 106.5, 100.2, 83.1, 63.9, 55.2, 54.1, 53.5, 51.8, 47.7, 43.9, 21.6; IR (KBr) \(\upsilon \): 3454, 2946, 1745, 1715, 1675, 1625, 1597, 1487, 1454, 1434, 1387, 1317, 1297, 1243, 1227, 1179, 1153, 1128, 1045, 981, 947, 892, 868, 843, 809, 767 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{32}\)FN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 623.2188. Found: 623.2190.

Dimethyl 1-benzyl-5-fluoro-8\(^\prime \)-methoxy-2\(^\prime \)-benzoyl-2-oxo- 2\(^\prime \),9a\(^\prime \)-dihydrospiro[indoline-3,1\(^\prime \)-quinolizine]-3\(^\prime \),4\(^\prime \)- dicarboxylate (1m)

Yellow solid, 81 %, m.p. 137.2–137.6 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.63 (brs, 1H, ArH), 7.46–7.44 (m, 4H, ArH), 7.17 (brs, 3H, ArH), 7.08 (brs, 1H, ArH), 7.02 (brs, 2H, ArH), 6.83–6.77 (m, 2H, ArH), 6.44 (d, \(J\) = 8.4 Hz, 1H, CH), 5.39 (s, 1H, CH), 5.06 (brs, 1H, CH), 4.66 (d, \(J\) = 5.4 Hz, 1H, CH), 4.46 (d, \(J\) = 15.0 Hz, 1H, CH), 4.36 (d, \(J\) = 15.0 Hz, 1H, CH), 3.96 (s, 3H, OCH\(_{3})\), 3.75 (br s, 1H, CH), 3.50 (s, 3H, OCH\(_{3})\), 2.88 (s, 3H, OCH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 197.5, 174.5, 165.7, 164.7, 159.0 (d, \(J\) = 239.9 Hz), 153.6, 145.2, 138.9, 137.5, 135.3, 132.9, 128.8, 128.7, 128.2, 128.1, 127.8, 127.6, 115.4 (d, \(J\) = 21.2 Hz), 115.2 (d, \(J\) = 19.7 Hz), 108.7 (d, \(J\) = 8.4 Hz), 106.3, 100.3, 83.1, 63.8, 55.1, 54.0, 53.5, 51.9, 48.1, 43.9; IR (KBr) \(\upsilon \): 3450, 2948, 1752, 1712, 1647, 1631, 1598, 1488, 1436, 1388, 1335, 1296, 1227, 1155, 1131, 1051, 980, 940, 908, 894, 862, 826, 768 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{35}\)H\(_{30}\)FN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 609.2032. Found: 609.2034.

Dimethyl 1-butyl-5-chloro-8\(^\prime \)-methoxy-2\(^\prime \)-(4- methylbenzoyl)-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indo-line-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1n)

Yellow solid, 93 %, m.p. 162.1–163.0 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.41 (d, \(J\) = 8.4 Hz, 2H, ArH), 7.30 (dd, \(J_{1}\) = 8.4 Hz, \(J_{2}\) = 1.8 Hz, 1H, ArH), 6.98 (d, \(J\) = 1.8 Hz, 1H, ArH), 6.90 (dd, \(J_{1}\) = 5.7 Hz, \(J_{2}\) = 3.0 Hz, 3H, ArH), 6.43 (d, \(J\) = 7.8 Hz, 1H, CH), 5.26 (s, 1H, CH), 4.98 (d, \(J\) = 3.0 Hz, 1H, CH), 4.70 (dd, \(J_{1}\) = 7.8 Hz, \(J_{2}\) = 1.8 Hz, 1H, CH), 3.95 (s, 3H, OCH\(_{3})\), 3.85 (br s, 1H, CH), 3.79 (s, 3H, OCH\(_{3})\), 3.47 (s, 3H, OCH\(_{3})\), 3.38–3.33 (m, 1H, CH), 3.30–3.27 (m, 1H, CH), 3.18 (s, 3H, OCH\(_{3})\), 1.10–1.05 (m, 1H, CH), 1.00–0.96 (m, 2H, CH), 0.94–0.89 (m, 1H, CH), 0.71 (t, \(J\) = 7.2 Hz, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 195.7, 174.1, 165.7, 164.8, 163.3, 163.2, 153.6, 145.2, 141.8, 130.4, 128.8, 128.6, 128.0, 127.7, 125.8, 113.6, 113.3, 108.4, 106.8, 102.5, 100.1, 83.1, 63.7, 57.6, 55.4, 55.2, 54.1, 53.4, 51.8, 47.5, 39.9, 29.3, 20.1, 13.6; IR (KBr) \(\upsilon \): 3450, 2953, 1737, 1713, 1670, 1626, 1601, 1574, 1510, 1483, 1459, 1432, 1384, 1323, 1246, 1175, 1133, 1116, 1027, 979, 940, 915, 873, 848, 812, 780 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{33}\)H\(_{34}\)ClN\(_{2}\)O\(_{8}\) ([M+H]\(^{+})\): 621.1998. Found: 621.1997.

Dimethyl 1-butyl-5-fluoro-8\(^\prime \)-methoxy-2\(^\prime \)-(4- methylbenzoyl)-2-oxo-2\(^\prime \),9a\(^\prime \)-dihydrospiro[indo-line-3,1\(^\prime \)- quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (1o)

Yellow solid, 90 %, m.p. 176.7–177.2 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.28 (d, \(J\) = 8.4 Hz, 2H, ArH), 7.17 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.10 (td, \(J_{1}\) = 9.0 Hz, \(J_{2}\) = 2.4 Hz, 1H, ArH), 6.87 (dd, \(J_{1}\) = 8.4 Hz, \(J_{2}\) = 4.2 Hz, 1H, ArH), 6.75 (dd, \(J_{1}\) = 8.4 Hz, \(J_{2}\) = 2.4 Hz, 1H, ArH), 6.43 (d, \(J\) = 7.8 Hz, 1H, CH), 5.27 (s, 1H, CH), 4.97 (d, \(J\) = 3.6 Hz, 1H, CH), 4.70 (dd, \(J_{1}\) = 8.4 Hz, \(J_{2}\) = 2.4 Hz, 1H, CH), 3.95 (s, 3H, OCH\(_{3})\), 3.86 (br s, 1H, CH), 3.48 (s, 3H, OCH\(_{3})\), 3.30–3.20 (m, 2H, CH), 3.18 (s, 3H, OCH\(_{3})\), 2.31 (s, 3H, CH\(_{3})\), 1.09–1.03 (m, 1H, CH), 1.02–0.97 (m, 2H, CH), 0.92–0.85 (m, 1H, CH), 0.72 (t, \(J\) = 7.2 Hz, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 197.2, 174.1, 165.7, 164.8, 158.9 (d, \(J\) = 239.4 Hz), 153.5, 145.2, 143.5, 139.2, 135.0, 129.1, 128.8, 128.3, 128.1, 115.4 (d, \(J\) = 25.1 Hz), 107.9 (d, \(J\) = 8.3 Hz), 106.6, 102.6, 100.2, 83.2, 63.6, 57.6, 55.1, 54.1, 53.4, 51.8, 47.8, 39.9, 29.2, 21.6, 20.1, 13.7; IR (KBr) \(\upsilon \): 3452, 2951, 1751, 1709, 1676, 1629, 1599, 1491, 1456, 1437, 1378, 1322, 1275, 1229, 1197, 1181, 1159, 1134, 1048, 1005, 975, 940, 901, 868, 839, 823, 761 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{33}\)H\(_{34}\)FN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 589.2345. Found: 589.2345.

Dimethyl 1-benzyl-2\(^\prime \)-(4-methylbenzoyl)-2,8\(^\prime \)-dioxo- 2\(^\prime \),8\(^\prime \),9\(^\prime \),9a\(^\prime \)-tetrahydrospiro[indoline-3,1\(^\prime \)-quinolizine]-3\(^\prime \),4\(^\prime \)- dicarboxylate (2a)

White solid, m.p. 188.8–188.9 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.59 (br s, 2H, ArH), 7.36 (br s, 1H, ArH), 7.19–7.13 (m, 8H, ArH), 6.80 (br s, 2H, ArH), 6.56 (brs, 1H, CH), 5.28 (br s, 2H, CH), 4.46 (d, \(J\) = 13.2 Hz, 1H, CH), 4.39 (d, \(J\) = 15.6 Hz, 1H, CH), 4.29 (d, \(J\) = 15.6 Hz, 1H, CH), 4.06 (s, 3H, OCH\(_{3})\), 3.51 (s, 3H, OCH\(_{3})\), 2.40 (s, 3H, CH\(_{3})\), 2.22 (d, \(J\) = 15.6 Hz, 1H, CH), 1.89 (t, \(J\) = 15.6 Hz, 1H, CH); \(^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 195.4, 190.3, 174.3, 165.3, 164.0, 144.4, 142.7, 134.6, 134.0, 129.6, 129.2, 128.8, 128.6, 127.7, 127.1, 127.0, 124.2, 123.9, 109.6, 107.3, 106.0, 59.0, 53.8, 52.0, 51.8, 45.9, 44.2, 36.1, 21.7; IR (KBr) \(\upsilon \): 3453, 1752, 1715, 1664, 1637, 1593, 1487, 1466, 1453, 1367, 1326, 1292, 1254, 1218, 1183, 1129, 1106, 945, 904, 795, 754 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{35}\)H\(_{30}\)N\(_{2}\)NaO\(_{7}\) ([M+Na]\(^{+})\): 613.1945. Found: 613.1947.

Dimethyl 1-benzyl-5-chloro-2\(^\prime \)-(4-methylbenzoyl)-2,8\(^\prime \)-dioxo-2\(^\prime \),8\(^\prime \),9\(^\prime \),9a\(^\prime \)-tetrahydrospiro[indo line-3,1\(^\prime \)-quinolizine]-3\(^\prime \),4\(^\prime \)-dicarboxylate (2b)

White solid, m.p. 181.1–181.3 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.89 (br s, 2H, ArH), 7.59 (br s, 1H, ArH), 7.47 (br s, 1H, ArH), 7.29 (br s, 5H, ArH), 7.13 (br s, 4H, ArH, CH), 5.34 (s, 1H, CH), 4.91 (brs, 2H, CH), 4.66–4.63 (m, 2H, CH), 3.99 (s, 3H, OCH\(_{3})\), 3.47 (s, 3H, OCH\(_{3})\), 2.38 (s, 3H, CH\(_{3})\), 1.87 (br s, 2H, CH); \(^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 197.6, 190.3, 172.4, 164.9, 164.0, 144.7, 144.2, 144.0, 141.0, 135.1, 134.7, 129.8, 129.6, 129.4, 128.9, 128.7, 128.1, 127.6, 125.5, 110.7, 107.7, 102.6, 54.9, 53.8, 52.3, 51.0, 44.2, 43.3, 36.3, 21.7; IR (KBr) \(\upsilon \): 3452, 2956, 1740, 1713, 1678, 1633, 1594, 1479, 1439, 1383, 1326, 1300, 1249, 1186, 1131, 1081, 1002, 956, 936, 898, 883, 855, 815, 781, 737, 704 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{35}\)H\(_{30}\)ClN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 625.1736. Found: 625.1745.

General procedure for the three-component reaction of quinoline, DMAD, and 3-methyleneoxindoles

A mixture of quinoline (1.5 mmol), DMAD (1.5 mmol, 0.213 g), and 3-methyleneoxindole (1.0 mmol) in 10.0 mL of dimethoxyethane (DME) was stirred at room temperature for 6 h. Then, the solvent was removed by evaporation and the residue was quickly subjected to thin-layer chromatography (15 \(\times \) 25 cm SiO\(_{2}\) plate) with a mixture of light petroleum and ethyl acetate (V/V = 2:1) as the developing reagent.

Dimethyl 1-benzyl-5-chloro-3\(^\prime \)-(4-methylbenzoyl)-2-oxo- 3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinoline]- 1\(^\prime \),2\(^\prime \)-dicarboxylate (3a)

Yellow solid, 40 %, m.p. 183–186 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.36 (br s, 2H, ArH), 7.23 (b rs, 2H, ArH), 7.16 (br s, 4H, ArH), 6.98–6.93 (m, 2H, ArH), 6.86 (br s, 4H, ArH), 6.65 (br s, 1H, ArH), 6.57 (br s, 1H, ArH), 6.33 (d, \(J\) = 5.4 Hz, 1H, CH), 5.42 (s, 1H, CH), 5.33 (brs, 1H, CH), 4.72–4.61 (br s, 3H, CH), 3.88 (s, 3H, OCH\(_{3})\), 3.61 (s, 3H, OCH\(_{3})\), 2.33 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 195.4, 173.8, 166.0, 165.2, 146.1, 143.7, 141.5, 138.1, 134.7, 134.6, 129.9, 129.2, 129.1, 128.7, 128.5, 128.4, 128.1, 127.8, 127.7, 126.9, 126.7, 122.4, 121.6, 118.9, 118.0, 114.7, 109.2, 65.0, 59.3, 53.1, 52.3, 49.4, 44.1; IR (KBr) \(\upsilon \): 3448, 2949, 1721, 1701, 1683, 1640, 1571, 1490, 1432, 1382, 1356, 1302, 1242, 1179, 1114, 972, 817 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{39}\)H\(_{32}\)ClN\(_{2}\)O\(_{6}\) ([M+H]\(^{+})\): 659.1943. Found: 659.1941.

Dimethyl 1-benzyl-5-chloro-3\(^\prime \)-(4-chlorobenzoyl)-2-oxo- 3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinoline]- 1\(^\prime \),2\(^\prime \)-dicarboxylate (3b)

Yellow solid, 52 %, m.p. 171–173 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.45 (br s, 4H, ArH), 7.22 (br s, 4H, ArH), 7.02 (br s, 1H, ArH), 6.87 (brs, 5H, ArH), 6.66 (br s, 2H, ArH), 6.35 (br s, 1H, CH), 5.45 (br s, 1H, CH), 5.34 (br s, 1H, CH), 4.76–4.64 (m, 3H, CH), 3.89 (s, 3H, OCH\(_{3})\), 3.62 (s, 3H, OCH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 194.8, 172.6, 165.4, 164.4, 150.5, 144.9, 141.7, 138.6, 137.5, 135.9, 135.2, 135.0, 129.8, 129.5, 128.9, 128.5, 128.3, 128.1, 128.0, 127.9, 127.4, 127.0, 126.1, 125.8, 122.4, 121.4, 118.6, 118.3, 113.9, 110.1, 64.3, 58.0, 53.1, 48.7, 43.2; IR (KBr) \(\upsilon \): 3448, 2949, 1722, 1702, 1641, 1614, 1490, 1433, 1401, 1382, 1356, 1304, 1241, 1190, 1130, 1090, 1015, 968, 917, 850, 817 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{38}\)H\(_{29}\)Cl\(_{2}\)N\(_{2}\)O\(_{6}\) ([M+H]\(^{+})\): 679.1397. Found: 679.1392.

Dimethyl 1-benzyl-5-fluoro-3\(^\prime \)-benzoyl-2-oxo-3\(^\prime \),4a\(^\prime \)- dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]-quinoline]-1\(^\prime \),2\(^\prime \)- dicarboxylate (3c)

Yellow solid, 55 %, m.p. 166–167 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.58 (br s, 1H, ArH), 7.41–7.36 (m, 4H, ArH), 7.21 (br s, 4H, ArH), 6.95–6.80 (m, 6H, ArH), 6.56 (br s, 1H, ArH), 6.41–6.40 (m, 1H, ArH), 6.34–6.33 (m, 1H, CH), 5.44 (s, 1H, CH), 5.32 (d, \(J\) = 6.6 Hz, 1H, CH), 4.68–4.61 (m, 3H, CH), 3.89 (s, 3H, OCH\(_{3})\), 3.63 (s, 3H, OCH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6})\) \(\delta \): 195.8, 172.9, 165.5, 164.5, 157.2 (d, \(J\) = 236.4 Hz), 150.5, 145.0, 139.3, 137.5, 136.5, 136.0, 135.3, 133.4, 129.8, 128.6, 127.9, 127.8, 127.6, 127.4, 126.9, 126.2 (d, \(J\) = 8.7 Hz), 122.3, 121.4, 118.7, 118.5, 115.5 (d, \(J\) = 25.7 Hz), 114.8 (d, \(J\) = 23.0 Hz), 113.9, 109.5 (d, \(J\) = 8.3 Hz), 64.3, 58.4, 53.1, 52.3, 48.9, 43.3; IR (KBr) \(\upsilon \): 3448, 2952, 1737, 1711, 1633, 1605, 1571, 1491, 1437, 1407, 1383, 1360, 1180, 1114, 1081, 1014, 967, 875, 819, 768 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{38}\)H\(_{30}\)FN\(_{2}\)O\(_{6}\) ([M+H]\(^{+})\): 629.2082. Found: 629.2078.

Dimethyl 1-benzyl-5-fluoro-3\(^\prime \)-(4-chlorobenzoyl)-2-oxo- 3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinoline]- 1\(^\prime \),2\(^\prime \)-dicarboxylate (3d)

Yellow solid, 53 %, m.p. 170–171 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.45 (br s, 4H, ArH), 7.22 (br s, 4H, ArH), 6.90 (br s, 6H, ArH), 6.65 (br s, 1H, ArH), 6.42–6.35 (m, 2H, ArH, CH), 5.44 (s, 1H, CH), 5.35 (brs, 1H, CH), 4.76–4.65 (m, 3H, CH), 3.88 (s, 3H, OCH\(_{3})\), 3.62 (s, 3H, OCH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6})\) \(\delta \): 194.8, 172.8, 165.5, 164.4, 157.3 (d, \(J\) = 239.1 Hz), 144.9, 139.2, 138.5, 137.5, 135.3, 135.1, 129.8, 129.5, 128.9, 128.5, 127.9, 127.8, 127.4, 127.0, 126.0 (d, \(J\) = 9.2 Hz), 122.4, 121.5, 118.5, 115.6 (d, \(J\) = 17.0 Hz), 115.0 (d, \(J\) = 18.6 Hz), 113.9, 109.6, 64.3, 58.1, 53.1, 52.3, 48.7, 43.3; IR (KBr) \(\upsilon \): 3450, 2949, 1712, 1634, 1570, 1491, 1454, 1431, 1405, 1382, 1351, 1245, 1178, 1092, 967, 852, 820, 776 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{38}\)H\(_{29}\)ClFN\(_{2}\)O\(_{6}\) ([M+H]\(^{+})\): 663.1693. Found: 663.1692.

Dimethyl 1-butyl-5-chloro-3\(^\prime \)-(4-methoxybenzoyl)-2-oxo- 3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quinoline]- 1\(^\prime \),2\(^\prime \)-dicarboxylate (3e)

Yellow solid, 60 %, m.p. 186–189 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.34 (br s, 2H, ArH), 7.22 (br s, 1H, ArH), 7.05 (br s, 1H, ArH), 6.93 (brs, 1H, ArH), 6.87 (br s, 4H, ArH), 6.76 (br s, 1H, ArH), 6.62 (br s, 1H, ArH), 6.35 (br s, 1H, CH), 5.44 (s, 1H, CH), 5.32–5.29 (m, 2H, CH), 4.59 (s, 1H, CH), 3.88 (s, 3H, OCH\(_{3})\), 3.76 (s, 3H, OCH\(_{3})\), 3.61 (s, 3H, OCH\(_{3})\), 3.44 (brs, 2H, CH), 1.03–1.02 (m, 4H, CH), 0.76 (brs, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6})\) \(\delta \): 194.1, 172.5, 165.5, 164.6, 163.2, 144.9, 142.2, 137.6, 129.9, 129.8, 129.5, 128.1, 128.0, 127.8, 126.5, 125.3, 122.2, 121.4, 118.9, 118.4, 113.8, 113.7, 109.4, 64.0, 58.3, 55.4, 53.0, 52.2, 48.9, 28.7, 19.4, 13.5; IR (KBr) \(\upsilon \): 3452, 2947, 1739, 1716, 1680, 1603, 1572, 1490, 1434, 1381, 1355, 1309, 1252, 1210, 1179, 1135, 1022, 968, 883, 816, 779 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{36}\)H\(_{34}\)ClN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 641.2049. Found: 649.2045.

3\(^\prime \)-Ethyl 1\(^\prime \),2\(^\prime \)-dimethyl 1-benzyl-5-methyl-2-oxo- 3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido-[1,2-a]quinoline]- 1\(^\prime \),2\(^\prime \),3\(^\prime \)-tricarboxylate (3f)

Yellow solid, 50 %, m.p. 117–115 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.38–7.18 (m, 6H, ArH), 6.94–6.82 (m, 5H, ArH), 6.52 (br s, 1H, ArH), 6.29 (br s, 1H, CH), 5.35 (b rs, 1H, CH), 5.02 (br s, 1H, CH), 4.88 (br s, 1H, CH), 4.50 (s, 1H, CH), 4.26 (s, 1H, CH), 3.87 (s, 3H, OCH\(_{3})\), 3.70 (s, 3H, OCH\(_{3})\), 3.35–3.54 (m, 2H, CH\(_{2})\), 1.74 (s, 3H, CH\(_{3})\), 0.38–0.37 (m, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 173.2, 168.1, 165.3, 164.7, 144.8, 141.1, 137.7, 136.1, 130.0, 129.4, 128.7, 128.5, 127.8, 127.6, 127.5, 127.4, 124.6, 122.1, 121.5, 118.9, 115.8, 114.0, 108.4, 63.9, 60.2, 58.2, 53.0, 52.2, 47.0, 43.3, 20.0, 12.8; IR (KBr) \(\upsilon \): 3452, 2951, 1742, 1709, 1604, 1572, 1496, 1457, 1435, 1381, 1352, 1307, 1253, 1218, 1184, 1161, 1119, 1088, 1019, 981, 810, 776 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{35}\)H\(_{33}\)N\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 593.2282. Found: 593.2285.

3\(^\prime \)-Ethyl 1\(^\prime \),2\(^\prime \)-dimethyl 1-benzyl-2-oxo-3\(^\prime \),4a\(^\prime \)- dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a]quino-line]- 1\(^\prime \),2\(^\prime \),3\(^\prime \)-tricarboxylate (3g)

Yellow solid, 63 %, m.p. 176–177 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.42–7.37 (m, 4H, ArH), 7.30 (br s, 1H, ArH), 7.17 (br s, 1H, ArH), 7.05 (brs, 1H, ArH), 6.92 (br s, 2H, ArH), 6.85–6.82 (m, 2H, ArH), 6.69 (br s, 1H, ArH), 6.52 (br s, 1H, ArH), 6.32 (br s, 1H, CH), 5.38 (br s, 1H, CH), 5.06 (d, \(J\) = 15.0 Hz, 1H, CH), 4.90 (d, \(J\) = 15.0 Hz, 1H, CH), 4.56 (s, 1H, CH), 4.28 (s, 1H, CH), 3.86 (s, 3H, OCH\(_{3})\), 3.70 (s, 3H, OCH\(_{3})\), 3.53 (br s, 1H, CH), 3.48 (brs, 1H, CH), 0.33 (brs, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 173.4, 168.1, 165.3, 164.6, 145.0, 143.6, 137.3, 136.0, 129.6, 128.8, 128.5, 127.7, 127.6, 127.5, 126.5, 124.7, 122.3, 121.4, 121.1, 118.9, 115.3, 113.9, 109.0, 64.1, 60.3, 58.0, 53.0, 52.2, 48.0, 43.3, 12.8; IR (KBr) \(\upsilon \): 3452, 2950, 1740, 1707, 1610, 1571, 1493, 1463, 1435, 1384, 1357, 1307, 1282, 1252, 1221, 1177, 1132, 1087, 1020, 981, 902, 875, 831, 813, 783 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{34}\)H\(_{31}\)N\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 579.2126. Found: 579.2131.

3\(^\prime \)-Ethyl 1\(^\prime \),2\(^\prime \)-dimethyl 1-benzyl-5-chloro-2-oxo- 3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido-[1,2-a]quinoline]- 1\(^\prime \),2\(^\prime \),3\(^\prime \)-tricarboxylate (3h)

Yellow solid, 70 %, m.p. 173–174 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.39–7.36 (m, 4H, ArH), 7.31–7.30 (m, 1H, ArH), 7.20 (t, \(J\) = 7.8 Hz, 1H, ArH), 7.13 (d, \(J\) = 8.4 Hz, 1H, ArH), 6.95–6.90 (m, 3H, ArH), 6.84 (d, \(J\) = 7.2 Hz, 1H, ArH), 6.60 (brs, 1H, ArH), 6.35 (d, \(J\) = 9.6 Hz, 1H, CH), 5.37 (dd, \(J_{1}\) = 9.6 Hz, \(J_{2}\) = 3.6 Hz, 1H, CH), 5.07 (d, \(J\) = 15.6 Hz, 1H, CH), 4.90 (d, \(J\) = 15.6 Hz, 1H, CH), 4.58 (s, 1H, CH), 4.29 (s, 1H, CH), 3.87 (s, 3H, OCH\(_{3})\), 3.71 (s, 3H, OCH\(_{3})\), 3.61–3.56 (m, 2H, CH\(_{2})\), 0.42 (t, \(J\) = 7.2 Hz, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 172.9, 168.1, 165.2, 164.5, 144.6, 142.4, 137.3, 135.7, 129.8, 128.6, 128.0, 127.7, 127.6, 126.9, 126.5, 125.5, 122.4, 121.3, 118.5, 115.7, 113.7, 110.3, 63.7, 60.5, 58.3, 53.1, 52.3, 47.8, 43.4, 12.8; IR (KBr) \(\upsilon \): 3448, 2949, 1735, 1712, 1603, 1570, 1493, 1457, 1434, 1364, 1341, 1311, 1250, 1212, 1179, 1140, 1087, 1016, 977, 812, 775 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{34}\)H\(_{30}\)ClN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 613.1736. Found: 613.1739.

3\(^\prime \)-Ethyl 1\(^\prime \),2\(^\prime \)-dimethyl 1-butyl-5-chloro-2-oxo-3\(^\prime \),4a\(^\prime \)-dihydrospiro[indoline-3,4\(^\prime \)-pyrido[1,2-a] quinoline]-1\(^\prime \),2\(^\prime \),3\(^\prime \)-tricarboxylate (3i)

Yellow solid, 73 %, m.p. 158–159 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.20–7.18 (m, 2H, ArH), 7.05 (d, \(J\) = 7.8 Hz, 1H, ArH), 6.92–6.91 (m, 2H, ArH), 6.86–6.85 (m, 1H, ArH), 6.65 (br s, 1H, ArH), 6.38 (d, \(J\) = 9.6 Hz, 1H, CH), 5.37 (d, \(J\) = 6.6 Hz, 1H, CH), 4.52 (s, 1H, CH), 4.21 (s, 1H, CH), 3.87 (s, 3H, OCH\(_{3})\), 3.74 (br s, 2H, CH\(_{2})\), 3.69 (s, 3H, OCH\(_{3})\), 3.63–3.62 (m, 2H, CH\(_{2})\), 1.57 (brs, 2H, CH\(_{2})\), 1.35–1.34 (m, 2H, CH\(_{2})\), 0.93 (br s, 3H, CH\(_{3})\), 0.61 (brs, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 172.6, 172.6, 168.1, 165.2, 164.5, 144.6, 142.8, 137.4, 129.8, 128.6, 127.9, 127.6, 126.9, 126.6, 125.2, 122.4, 121.3, 118.5, 115.6, 113.8, 109.9, 63.5, 60.4, 58.2, 53.0, 52.2, 47.9, 29.0, 19.4, 13.5, 13.1; IR (KBr) \(\upsilon \): 3454, 2956, 1744, 1713, 1639, 1614, 1598, 1570, 1490, 1433, 1378, 1355, 1325, 1303, 1247, 1212, 1183, 1135, 1116, 1021, 989, 969, 944, 914, 868, 822, 780 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{31}\)H\(_{32}\)ClN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 579.1893. Found: 579.1894.

3\(^\prime \)-Ethyl 1\(^\prime \),2\(^\prime \)-dimethyl 1-benzyl-5-fluoro-2-oxo-3\(^\prime \),4a\(^\prime \)- dihydrospiro[indoline-3,4\(^\prime \)-pyrido-[1,2-a]quinoline]- 1\(^\prime \),2\(^\prime \),3\(^\prime \)-tricarboxylate (3j)

Yellow solid, 65 %, m.p. 160–163 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.40–7.37 (m, 4H, ArH), 7.30 (br s, 1H, ArH), 7.20 (br s, 1H, ArH), 7.94–7.63 (m, 4H, ArH), 6.85 (br s, 1H, ArH), 6.43 (br s, 1H, ArH), 6.36 (d, \(J\) = 8.4 Hz, 1H, CH), 5.40 (br s, 1H, CH), 5.08 (d, \(J\) = 15.6 Hz, 1H, CH), 4.90 (d, \(J\) = 15.6 Hz, 1H, CH), 4.60 (s, 1H, CH), 4.30 (s, 1H, CH), 3.87 (s, 3H, OCH\(_{3})\), 3.70 (s, 3H, OCH\(_{3})\), 3.59–3.55 (m, 2H, CH\(_{2})\), 0.38 (brs, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 174.0, 168.6, 165.8, 165.1, 158.1 (d, \(J\) = 239.6 Hz), 145.6, 139.7, 137.9, 135.3, 129.8, 128.8, 128.2, 128.0, 127.9, 127.6, 127.1 (d, \(J\) = 7.8 Hz), 122.5, 121.6, 118.3, 115.9, 115.6 (d, \(J\) = 26.0 Hz), 115.0 (d, \(J\) = 23.3 Hz), 114.4, 109.0 (d, \(J\) = 8.0 Hz), 64.5, 60.9, 59.3, 53.1, 52.2, 48.4, 44.4, 13.3; IR (KBr) \(\upsilon \): 3451, 2950, 1739, 1708, 1608, 1571, 1494, 1456, 1436, 1344, 1307, 1252, 1226, 1175, 1131, 1020, 979, 900, 875, 827, 775 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{34}\)H\(_{30}\)FN\(_{2}\)O\(_{7}\) ([M+H]\(^{+})\): 597.2032. Found: 597.2034.

General procedure for the Diels–Alder reaction of spiro[indoline-3,1\(^\prime \)-quinolizines]

A mixture of spiro[indoline-3,1\(^\prime \)-quinolizine] (1.0 mmol) and \(N\)-substituted maleimide or maleic anhydride (1.5 mmol) in 10.0 mL of DME was refluxed for 12 h. Then, the solvent was removed by evaporation and the residue was subjected to thin-layer chromatography with a mixture of light petroleum and ethyl acetate (V/V = 2:1) as the developing reagent to give the pure spiro compound 4a4g.

Spiro compounds (4a)

White solid, 80 %, m.p. 297–298 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.60 (d, \(J\) = 8.4 Hz, 2H, ArH), 7.44 (t, \(J\) = 7.8 Hz, 2H, ArH), 7.38 (t, \(J\) = 7.2 Hz, 1H, ArH), 7.19 (t, \(J\) = 7.2 Hz, 1H, ArH), 7.14 (t, \(J\) = 7.2 Hz, 2H, ArH), 7.05 (t, \(J\) = 8.4 Hz, 1H, ArH), 6.99–6.97 (m, 6H, ArH), 6.79 (dd, \(J_{1}\) = 9.0 Hz, \(J_{2}\) = 4.2 Hz, 1H, ArH), 6.61–6.60 (m, 1H, ArH), 5.77 (d, \(J\) = 5.4 Hz, 1H, CH), 5.20 (s, 1H, CH), 4.59 (br s, 2H, CH\(_{2})\), 4.32–4.31 (m, 1H, CH), 4.15 (s, 1H, CH), 4.00 (s, 3H, OCH\(_{3})\), 3.84 (s, 3H, OCH\(_{3})\), 3.54 (dd, \(J_{1}\) = 7.5 Hz, \(J_{2}\) = 3.0 Hz, 1H, CH), 3.48 (dd, \(J_{1}\) = 7.5 Hz, \(J_{2}\) = 3.0 Hz, 1H, CH), 3.34 (br s, 3H, OCH\(_{3})\), 2.66 (s, 1H, CH), 0.52 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 194.6, 175.1, 174.5, 174.1, 165.3, 164.5, 163.1, 157.7 (d, \(J\) = 236.4 Hz), 146.5, 140.6, 138.5, 135.6, 131.8, 130.1, 129.8, 129.0, 128.6, 128.5, 127.5, 127.4, 126.6, 126.0 (d, \(J\) = 9.5 Hz), 122.6, 117.2 (d, \(J\) = 24.8 Hz), 114.6 (d, \(J\) = 23.6 Hz), 113.5, 109.8 (d, \(J\) = 7.2 Hz), 94.6, 60.7, 55.5, 53.3, 51.9, 50.8, 49.8, 45.9, 43.1, 42.2, 38.5, 18.9; IR (KBr) \(\upsilon \): 3450, 2951, 1778, 1711, 1670, 1590, 1488, 1459, 1434, 1376, 1345, 1324, 1244, 1176, 1123, 1033, 987, 950, 903, 843, 811 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{46}\)H\(_{39}\)FN\(_{3}\)O\(_{9}\) ([M+H]\(^{+})\): 796.2665. Found: 796.2670.

Spiro compounds (4b)

White solid, 77 %, m.p. \(>\)300 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.49 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.43 (t, \(J\) = 7.8 Hz, 2H, ArH), 7.38 (t, \(J\) = 7.8 Hz, 1H, ArH), 7.26–7.25 (m, 3H, ArH), 7.19 (t, \(J\) = 7.2 Hz, 1H, ArH), 7.14 (t, \(J\) = 7.2 Hz, 2H, ArH), 7.00–6.99 (m, 4H, ArH), 6.83–6.82 (m, 2H, ArH), 5.74 (d, \(J\) = 5.4 Hz, 1H, CH), 5.21 (s, 1H, CH), 4.54 (br s, 2H, CH\(_{2})\), 4.32–4.30 (m, 1H, CH), 4.15 (s, 1H, CH), 4.00 (s, 3H, OCH\(_{3})\), 3.54 (dd, \(J_{1}\) = 7.5 Hz, \(J_{2}\) = 3.0 Hz, 1H, CH), 3.47 (dd, \(J_{1}\) = 7.5 Hz, \(J_{2}\) = 3.0 Hz, 1H, CH), 3.35 (s, 3H, OCH\(_{3})\), 2.64 (s, 1H, CH), 2.37 (s, 3H, CH\(_{3})\), 0.50 (s, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 196.0, 175.0, 174.7, 173.8, 166.0, 165.1, 146.8, 143.7, 141.7, 140.9, 135.0, 134.7, 131.3, 131.1, 129.3, 129.0, 128.9, 128.4, 128.3, 128.0, 127.4, 126.6, 126.1, 109.8, 96.5, 61.6, 53.7, 52.1, 51.3, 50.4, 46.0, 44.2, 42.6, 39.2, 21.6, 19.4; IR (KBr) \(\upsilon \): 3452, 2952, 1781, 1712, 1641, 1483, 1430, 1384, 1322, 1233, 1186, 1129, 949, 887, 803 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{46}\)H\(_{39}\)ClN\(_{3}\)O\(_{8}\) ([M+H]\(^{+})\): 796.2420. Found: 796.2429.

Spiro compounds (4c)

White solid, 72 %, m.p. 173–175 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.46 (d, \(J\) = 8.4 Hz, 2H, ArH), 7.22 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.09 (t, \(J\) = 8.4 Hz, 1H, ArH), 6.91–6.86 (m, 5H, ArH), 6.57 (d, \(J\) = 6.6 Hz, 1H, ArH), 5.81 (d, \(J\) = 4.2 Hz, 1H, CH), 5.09 (s, 1H, CH), 4.31 (br s, 1H, CH), 4.04 (s, 1H, CH), 4.00 (s, 3H, OCH\(_{3})\), 3.80 (s, 3H, OCH\(_{3})\), 3.53–3.52 (m, 1H, CH), 3.46–3.45 (m, 1H, CH), 3.37 (brs, 1H, CH), 3.28 (s, 3H, OCH\(_{3})\), 3.26 (br s, 1H, CH), 2.61 (s, 1H, CH), 2.29 (s, 3H, CH\(_{3})\), 1.04–1.01 (m, 3H, CH), 0.84–0.82 (m, 1H, CH), 0.74–0.71 (m, 6H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 196.1, 173.7, 170.9, 169.5, 165.3, 164.5, 157.2 (d, \(J\) = 235.2 Hz), 146.3, 143.3, 139.3, 134.6, 138.7, 127.7, 124.5 (d, \(J\) = 8.9 Hz), 116.4 (d, \(J\) = 25.2 Hz), 114.8 (d, \(J\) = 23.1 Hz), 109.3 (d, \(J\) = 8.9 Hz), 95.1, 93.6, 58.4, 55.1, 53.4, 51.6, 50.9, 49.9, 47.8, 47.5, 43.0, 37.5, 28.5, 21.0, 19.2, 13.5; IR (KBr) \(\upsilon \): 3457, 2956, 1712, 1600, 1514, 1489, 1455, 1386, 1322, 1237, 1178, 1131, 1025, 962, 808, 758 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{44}\)H\(_{42}\)FN\(_{3}\)NaO\(_{9}\) ([M+Na]\(^{+})\): 798.2797. Found: 798.2783.

Spiro compounds (4d)

White solid, 85 %, m.p. 182–185 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.51 (d, \(J\) = 8.4 Hz, 2H, ArH), 7.46 (d, \(J\) = 8.4 Hz, 2H, ArH), 7.11–7.08 (m, 1H, ArH), 7.05 (d, \(J\) = 8.4 Hz, 2H, ArH), 6.91–6.90 (m, 3H, ArH), 6.57 (d, \(J\) = 8.4 Hz, 1H, ArH), 5.82 (d, \(J\) = 1.8 Hz, 1H, CH), 5.09 (s, 1H, CH), 4.32 (br s, 1H, CH), 4.06 (s, 1H, CH), 4.00 (s, 3H, OCH\(_{3})\), 3.80 (s, 3H, OCH\(_{3})\), 3.55–3.54 (m, 1H, CH), 3.48–3.47 (m, 1H, CH), 3.35 (br s, 5H, CH, OCH\(_{3})\), 2.62 (s, 1H, CH), 1.03 (br s, 3H, CH), 0.82 (brs, 1H, CH), 0.73–0.72 (m, 6H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 195.0, 174.7, 174.6, 173.6, 166.0, 165.1, 163.4, 158.5 (d, \(J\) = 239.9 Hz), 146.6, 141.7, 138.8, 134.7, 130.4, 129.8, 129.4, 127.4, 126.2 (d, \(J\) = 8.6 Hz), 123.0, 118.8 (d, \(J\) = 25.8 Hz), 115.1 (d, \(J\) = 23.1 Hz), 113.4, 108.4 (d, \(J\) = 8.4 Hz), 96.6, 61.2, 55.4, 53.5, 51.9, 51.2, 50.5, 47.6, 46.0, 42.6, 40.2, 39.3, 29.0, 20.1, 19.7, 13.6; IR (KBr) \(\upsilon \): 3458, 2957, 1781, 1714, 1677, 1598, 1491, 1455, 1384, 1325, 1240, 1280, 1130, 1093, 1020, 960, 908, 868, 835, 807 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{43}\)H\(_{40}\)ClFN\(_{3}\)O\(_{9}\) ([M+H]\(^{+})\): 796.2432. Found: 796.2432.

Spiro compounds (4e)

White solid, 86 %, m.p. 230–233 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.53–7.49 (m, 4H, ArH), 7.09–7.06 (m, 1H, ArH), 7.04 (d, \(J\) = 8.4 Hz, 2H, ArH), 6.92–6.90 (m, 3H, ArH), 6.60 (d, \(J\) = 8.4 Hz, 1H, ArH), 5.13 (s, 1H, CH), 4.63 (d, \(J\) = 4.2 Hz, 1H, CH), 4.05 (br s, 1H, CH), 4.02 (s, 3H, OCH\(_{3})\), 3.99 (s, 1H, CH), 3.80 (s, 3H, OCH\(_{3})\), 3.58–3.56 (m, 1H, CH), 3.48–3.43 (m, 1H, CH), 3.40–3.39 (m, 1H, CH), 3.36 (s, 3H, OCH\(_{3})\), 3.32 (br s, 1H, CH), 2.75 (s, 1H, CH), 1.46 (s, 3H, CH\(_{3})\), 1.03–1.01 (m, 1H, CH), 0.93–0.91 (m, 2H, CH), 0.80–0.79 (m, 1H, CH), 0.67 (d, \(J\) = 7.2 Hz, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, CDCl\(_{3}) \quad \delta \): 195.2, 175.1, 174.4, 173.4, 166.1, 165.2, 163.5, 158.3 (d, \(J\) = 240.2 Hz), 146.6, 139.6, 138.0, 134.7, 130.6, 130.2, 129.8, 129.4, 127.3, 127.2 (d, \(J\) = 8.9 Hz), 122.3, 117.4 (d, \(J\) = 25.5 Hz), 115.0 (d, \(J\) = 23.4 Hz), 113.4, 108.4 (d, \(J\) = 8.0 Hz), 97.0, 61.8, 55.7, 55.4, 53.5, 51.3, 50.4, 46.6, 45.0, 42.7, 40.2, 34.6, 29.0, 20.0, 19.5, 13.6; IR (KBr) \(\upsilon \): 3457, 2958, 1747, 1712, 1601, 1492, 1446, 1426, 1384, 1355, 1318, 1264, 1236, 1175, 1138, 1022, 956, 918, 896, 876, 825, 803 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{43}\)H\(_{30}\)ClFN\(_{3}\)O\(_{9}\) ([M+H]\(^{+})\): 796.2432. Found: 796.2429.

Spiro compounds (4f)

White solid, 90 %, m.p. \(>\)300 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.43 (d, \(J\) = 4.8 Hz, 2H, ArH), 7.27 (d, \(J\) = 7.2 Hz, 1H, ArH), 6.90 (br s, 3H, ArH), 6.84 (br s, 1H, ArH), 5.50 (s, 1H, CH), 4.89 (d, \(J\) = 3.0 Hz, 1H, CH), 4.47 (brs, 1H, CH), 4.00 (s, 3H, OCH\(_{3})\), 3.98 (s, 1H, CH), 3.79 (s, 3H, OCH\(_{3})\), 3.77–3.75 (m, 1H, CH), 3.69 (br s, 1H, CH), 3.36 (br s, 4H, CH, OCH\(_{3})\), 3.26–3.24 (m, 1H, CH), 2.74 (s, 3H, OCH\(_{3})\), 2.54 (s, 1H, CH), 1.00 (br s, 3H, CH), 0.82–0.78 (m, 1H, CH), 0.70 (br s, 3H, CH\(_{3});\) IR (KBr) \(\upsilon \): 3453, 2957, 1861, 1779, 1699, 1675, 1641, 1584, 1511, 1483, 1455, 1433, 1368, 1342, 1321, 1269, 1232, 1203, 1170, 1129, 1086, 1049, 1017, 972, 942, 924, 879, 841, 811 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{37}\)H\(_{35}\)ClN\(_{2}\)NaO\(_{11}\) ([M+Na]\(^{+})\): 741.1822. Found: 741.1808.

Spiro compounds (4g)

White solid, 88 %, m.p. 283–285 \(^{\circ }\)C; \(^{1}\)H NMR (600 MHz, DMSO-\(d_{6}) \quad \delta \): 7.30 (d, \(J\) = 8.4 Hz, 2H, ArH), 7.17 (d, \(J\) = 7.8 Hz, 2H, ArH), 7.08 (td, \(J_{1}\) = 9.3 Hz, \(J_{2}\) = 2.4 Hz, 1H, ArH), 6.88 (dd, \(J_{1}\) = 8.4 Hz, \(J_{2}\) = 4.2 Hz, 1H, ArH), 6.61 (dd, \(J_{1}\) = 9.3 Hz, \(J_{2}\) = 2.4 Hz, 1H, ArH), 5.06 (s, 1H, CH), 4.92 (dd, \(J_{1}\) = 6.6 Hz, \(J_{2}\) = 2.4 Hz, 1H, CH), 4.48 (dd, \(J_{1}\) = 6.6 Hz, \(J_{2}\) = 3.6 Hz, 1H, CH), 4.00–3.99 (m, 4H, CH, OCH\(_{3})\), 3.76 (dd, \(J_{1}\) = 7.5 Hz, \(J_{2}\) = 3.6 Hz, 1H, CH), 3.67 (dd, \(J_{1}\) = 7.5 Hz, \(J_{2}\) = 3.6 Hz, 1H, CH), 3.36 (s, 3H, OCH\(_{3})\), 3.28–3.27 (m, 1H, CH), 3.20–3.19 (m, 1H, CH), 2.71 (s, 3H, OCH\(_{3})\), 2.56 (s, 1H, CH), 2.31 (s, 3H, CH\(_{3})\), 1.02 (br s, 3H, CH), 0.81–0.79 (m, 1H, CH), 0.71 (d, \(J\) = 7.2 Hz, 3H, CH\(_{3});\,^{13}\)C NMR (150 MHz, DMSO-\(d_{6}) \quad \delta \): 194.8, 175.3, 174.2, 174.1, 165.4, 164.6, 163.1, 157.5 (d, \(J\) = 236.1 Hz), 146.5, 140.6, 139.0, 138.2, 130.0, 129.8, 129.4, 129.1, 126.3, 125.9 (d, \(J\) = 8.3 Hz), 122.7, 117.3 (d, \(J\) = 22.5 Hz), 114.7 (d, \(J\) = 23.3 Hz), 113.4, 109.3, 94.5, 60.2, 55.4, 53.3, 51.8, 50.8, 49.7, 47.0, 45.8, 42.1, 28.7, 20.6, 19.4, 19.2, 13.4; IR (KBr) \(\upsilon \): 3456, 2956, 1864, 1780, 1740, 1697, 1641, 1585, 1489, 1455, 1435, 1382, 1339, 1320, 1267, 1232, 1202, 1177, 1120, 1086, 1046, 1017, 979, 929, 872, 816, 792 cm\(^{-1}\); MS (\(m\)/\(z)\): HRMS (ESI) Calcd. for C\(_{37}\)H\(_{35}\)FN\(_{2}\)NaO\(_{10}\) ([M+Na]\(^{+})\): 709.2168. Found: 709.2158.

Supporting information

\(^{1}\)H and \(^{13}\)C NMR spectra and 2D NMR for all new compounds are available. Crystallographic data 1c (CCDC 916455), 1h (CCDC 916456), 1m (CCDC 916457), 2b (CCDC 916458), 3e (CCDC 928874), 3i (CCDC 928875), 4d (CCDC 928873) have been deposited at the Cambridge Crystallographic Database Centre and are available on request (http://www.ccdc.cam.ac.uk).

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21272200) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank the Analysis and Test Center of Yangzhou University for providing instruments for analysis.

Supplementary material

11030_2013_9459_MOESM1_ESM.doc (4.3 mb)
Supplementary material 1 (doc 4383 KB)

References

  1. 1.
    Sundberg RJ (1996) The chemistry of indoles. Academic Press, New YorkGoogle Scholar
  2. 2.
    Abdel-Rahman AH, Keshk EM, Hanna MA, El-Bady ShM (2004) Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg Med Chem 12:2483–2488. doi: 10.1016/j.bmc.2003.10.063 PubMedCrossRefGoogle Scholar
  3. 3.
    Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldmann H (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 102:17272–17277. doi: 10.1073/pnas.0503647102 PubMedCrossRefGoogle Scholar
  4. 4.
    Ashimori A, Bachand B, Overman LE, Poon DJ (1998) Catalytic asymmetric synthesis of quaternary carbon centers. Exploratory investigations of intramolecular heck reactions of (\(E)-\alpha, \beta \)-unsaturated 2-haloanilides and analogues to form enantioenriched spirocyclic products. J Am Chem Soc 120:6477–6487. doi:  10.1021/ja980786p CrossRefGoogle Scholar
  5. 5.
    Sebahar PR, Williams RM (2000) The asymmetric total synthesis of (+)- and (\(-\))-spirotryprostatin B. J Am Chem Soc 122:5666–5667. doi:  10.1021/ja001133n CrossRefGoogle Scholar
  6. 6.
    iKotha SB, Deb AC, Lahiri K, Manivannan E (2009) Selected synthetic strategies to spirocyclics. Synthesis 2:165–193. doi: 10.1055/s-0028-1083300 Google Scholar
  7. 7.
    Singh GS, Desta ZY (2012) Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem Rev 112:6104–6155. doi: 10.1021/cr300135y PubMedCrossRefGoogle Scholar
  8. 8.
    Liu YY, Wang H, Wan JP (2013) Recent advances in diversity oriented synthesis through isatin-based multicomponent reactions. Asian J Org Chem 2:374–386. doi: 10.1002/ajoc.201200180 CrossRefGoogle Scholar
  9. 9.
    Trost BM, Brennan MK (2009) Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis 18:3003–3025. doi: 10.1055/s-0029-1216975 CrossRefGoogle Scholar
  10. 10.
    Ball-Jones NR, Badillo JJ, Franz AK (2012) Strategies for the enantioselective synthesis of spirooxindoles. Org Biomol Chem 10:5165–5181. doi: 10.1039/C2OB25184A PubMedCrossRefGoogle Scholar
  11. 11.
    Hong L, Wang R (2013) Recent advances in asymmetric organocatalytic construction of 3,3\(^\prime \)-spirocyclic oxindoles. Adv Synth Catal 355:1023–1052. doi:  10.1002/adsc.201200808 CrossRefGoogle Scholar
  12. 12.
    Tan B, Candeias NR, Barbas CF III (2011) Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst. Nat Chem 3:473–477. doi: 10.1038/nchem.1039 PubMedGoogle Scholar
  13. 13.
    Bergonzini G, Melchiorre P (2012) Dioxindole in asymmetric catalytic synthesis: routes to enantioenriched 3-substituted 3-hydroxyoxindoles and the preparation of maremycin A. Angew Chem Int Ed 51:971–974. doi: 10.1002/anie.201107443 CrossRefGoogle Scholar
  14. 14.
    Duan SW, Li Y, Liu YY, Zou YQ, Shi DQ, Xiao WJ (2012) An organocatalytic Michael-aldol cascade: formal [3+2] annulation to construct enantioenriched spirocyclic oxindole derivatives. Chem Commun 48:5160–5162. doi: 10.1039/C2CC30931A CrossRefGoogle Scholar
  15. 15.
    Awata A, Arai T (2012) Catalytic asymmetric exo’-selective [3+2] cycloaddition for constructing stereochemically diversified spiro[pyrrolidin-3,3\(^\prime \)-oxindole]s. Chem Eur J 18:8278–8282. doi:  10.1002/chem.201201249 PubMedCrossRefGoogle Scholar
  16. 16.
    Trost BM, Hirano K (2012) Dinuclear zinc catalyzed asymmetric spirannulation reaction: an umpolung strategy for formation of \(\alpha \)-alkylated-\(\alpha \)-hydroxyoxindoles. Org Lett 14:2446–2449. doi:  10.1021/ol300577y CrossRefGoogle Scholar
  17. 17.
    Wu L, Sun J, Yan CG (2012) Facile synthesis of spiro[indoline-3,3\(^\prime \)-pyrrolo[1,2-a]quinolines] and spiro[indoline-3,1\(^\prime \)-pyrrolo[2,1-a]isoquinolines] via 1,3-dipolar cycloaddition reactions of heteroaromatic ammonium salts with 3-phenacylideneoxindoles. Org Biomol Chem 10:9452–9463. doi:  10.1039/C2OB26849C PubMedCrossRefGoogle Scholar
  18. 18.
    Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L (2003) Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc Chem Res 36:899–907. doi: 10.1021/ar0502026 PubMedCrossRefGoogle Scholar
  19. 19.
    Nair V, Menon RS, Sreekanth A, Abhilash N, Biju AT (2006) Engaging zwitterions in carbon-carbon and carbon-nitrogen bond-forming reactions: a promising synthetic strategy. Acc Chem Res 39:520–530. doi: 10.1021/ar0502026 PubMedCrossRefGoogle Scholar
  20. 20.
    Nair V, Screekanth AR, Abhilash N, Biju AT, Devi BR, Rajeev SM, Nigam PR, Srinivas (2003) Novel pyridine-catalyzed reaction of dimethyl acetylenedicarboxylate with aldehydes and N-tosylimines: efficient synthesis of 2-benzoylfumarates and 1-azadienes. Synthesis 12:1895–1902. doi: 10.1055/s-2003-41000 CrossRefGoogle Scholar
  21. 21.
    Yavari I, Hossaini Z, Sabbaghan M, Ghazanfarpour-Darjani (2007) Reaction of N-heterocycles with acetylenedicarboxylates in the presence of N-alkylisatins or ninhydrin. Efficient synthesis of spiro compounds. Manatsh Chem 138:677–681. doi: 10.1007/s00706-007-0662-x CrossRefGoogle Scholar
  22. 22.
    Nair V, Devipriya S, Suresh E (2008) Construction of heterocycles via 1,4-dipolar cycloaddition of quinolinee DMAD zwitterion with various dipolarophiles. Tetrahedron 64:3567–3577. doi: 10.1016/j.tet.2008.01.106 Google Scholar
  23. 23.
    Yang HB, Guan XY, Wei Y, Shi M (2012) A three-component condensation for the construction of the spiro[indoline-3,3\(^\prime \)-piperidin]-2-one skeleton. Eur J Org Chem 14:2792–2800. doi:  10.1002/ejoc.201200185 CrossRefGoogle Scholar
  24. 24.
    Sun J, Sun Y, Gong H, Xie YJ, Yan CG (2012) Facile synthesis of dispirooxindole-fused heterocycles via domino 1,4-dipolar addition and Diels–Alder reaction of in situ generated Huisgen 1,4-dipoles. Org Lett 14:5172–5175. doi: 10.1021/ol302530m PubMedCrossRefGoogle Scholar
  25. 25.
    Autrey RL, Tahk FC (1967) The synthesis and stereochemistry of some isatylideneacetic acid derivatives. Tetrahedron 23:901–917. doi: 10.1016/0040-4020(67)85040-3 Google Scholar
  26. 26.
    Kloek C, Jin X, Choi K, Khosla C, Madrid PB, Spencer A, Raimundo BC, Boardman P, Lanza G, Griffin JH (2011) Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett 21:2692–2696. doi: 10.1016/j.bmcl.2010.12.037 Google Scholar
  27. 27.
    Krow GR, Huang Q, Szczepanski SW, Hausheer FH, Caroll PJ (2007) Stereoselectivity in Diels–Alder reactions of diene-substituted \(N\)-alkoxycarbonyl-1,2-dihydropyridines. J Org Chem 72:3458–3466. doi:  10.1021/jo0700575 PubMedCrossRefGoogle Scholar
  28. 28.
    Barbe G, Charette AB (2008) Total synthesis of (+)\(-\)lepadin B: stereoselective synthesis of nonracemic polysubstituted hydroquinolines using an RC-ROM process. J Am Chem Soc 130:13873–13875. doi:  10.1021/ja8068215 PubMedCrossRefGoogle Scholar
  29. 29.
    Harrison DP, Iovan DA, Myers WH, Sabat M, Wang S, Zottig VE, Harman WD (2011) [4+2] Cyclocondensation reactions of Tungsten–dihydropyridine complexes and the generation of tri- and tetrasubstituted piperidines. J Am Chem Soc 133:18378–18387. doi: 10.1021/ja2075086 Google Scholar
  30. 30.
    Chou SS, Wang HC, Chen PW, Yang CH (2008) [4+2] Cycloaddition reactions of 4-sulfur-substituted 2-pyridones with electron-deficient dienophiles. Tetrahedron 64:5291–5297. doi: 10.1016/j.tet.2008.03.030 CrossRefGoogle Scholar
  31. 31.
    Nakano H, Osone K, Takeshita M, Kwon E, Seki C, Matsuyama N, Kohari Y (2010) A novel chiral oxazolidine organocatalyst for the synthesis of anoseltamivir intermediate using a highly enantioselective Diels–Alder reaction of 1,2-dihydropyridine. Chem Commun 46:4827–4829. doi: 10.1039/C0CC00110D CrossRefGoogle Scholar
  32. 32.
    Suttibut C, Kohari Y, Igarashi K, Nakano H, Hirama M, Seki C, Matsuyama H, Uwai K, Takano N, Okuyama Y, Osone K, Takeshita M, Kwon E (2011) A highly enantioselective Diels–Alder reaction of 1,2-dihydropyridine using a simple \(\beta \)-amino alcohol organocatalyst for a practical synthetic methodology of oseltamivir intermediate. Tetrahedron Lett 52:4745–4748. doi:  10.1016/j.tetlet.2011.06.109 CrossRefGoogle Scholar
  33. 33.
    Comins DL, Bharathi P, Sahn JJ (2012) Studies toward the synthesis of spirolucidine. Preparation of ABC and EF ring fragments. Tetrahedron Lett 53:1347–1350. doi: 10.1016/j.tetlet.2011.12.127 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.College of Chemistry & Chemical Engineering, Yangzhou UniversityYangzhouChina

Personalised recommendations