Molecular Diversity

, Volume 16, Issue 2, pp 319–323 | Cite as

Task-specific nitrite and azide ionic liquids for the efficient one-pot synthesis of 1,2,3-triazoles from the aniline derivatives

  • Hassan Valizadeh
  • Mohammad Amiri
  • Elham Khalili
Full-Length Paper


An efficient, fast, and straightforward procedure for the synthesis of aromatic azides and in situ preparation of 1,2,3-triazoles under mild conditions is described. Aniline derivatives have been treated with task-specific [bmim]NO2 and [bmim]N3 ionic liquids to give the related phenyl azides which, on further in situ reaction with 1,3-diketones and ethylacetoacetate, afforded 1,2,3-triazoles in very good to excellent yields in very short reaction time. This procedure, which generates azides followed by azide in situ cycloaddition with diketone, has become an attractive option. In this protocol, [bmim]N3 is used instead of the highly toxic reagent NaN3.


Nitrite ionic liquid Azide ionic liquid Triazole β-Ketoester 1,3-Diketone 1,2,3-Triazole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2012_9366_MOESM1_ESM.pdf (62 kb)
ESM 1 (PDF 63 kb)
11030_2012_9366_MOESM2_ESM.pdf (55 kb)
ESM 2 (PDF 56 kb)
11030_2012_9366_MOESM3_ESM.pdf (60 kb)
ESM 3 (PDF 60 kb)
11030_2012_9366_MOESM4_ESM.pdf (56 kb)
ESM 4 (PDF 57 kb)
11030_2012_9366_MOESM5_ESM.pdf (64 kb)
ESM 5 (PDF 65 kb)
11030_2012_9366_MOESM6_ESM.pdf (61 kb)
ESM 6 (PDF 61 kb)
11030_2012_9366_MOESM7_ESM.pdf (50 kb)
ESM 7 (PDF 50 kb)
11030_2012_9366_MOESM8_ESM.pdf (52 kb)
ESM 8 (PDF 53 kb)
11030_2012_9366_MOESM9_ESM.pdf (62 kb)
ESM 9 (PDF 63 kb)
11030_2012_9366_MOESM10_ESM.pdf (62 kb)
ESM 10 (PDF 62 kb)
11030_2012_9366_MOESM11_ESM.pdf (65 kb)
ESM 11 (PDF 65 kb)
11030_2012_9366_MOESM12_ESM.pdf (64 kb)
ESM 12 (PDF 64 kb)
11030_2012_9366_MOESM13_ESM.pdf (52 kb)
ESM 13 (PDF 53 kb)
11030_2012_9366_MOESM14_ESM.pdf (59 kb)
ESM 14 (PDF 59 kb)
11030_2012_9366_MOESM15_ESM.pdf (51 kb)
ESM 15 (PDF 51 kb)
11030_2012_9366_MOESM16_ESM.pdf (52 kb)
ESM 16 (PDF 52 kb)
11030_2012_9366_MOESM17_ESM.pdf (62 kb)
ESM 17 (PDF 63 kb)
11030_2012_9366_MOESM18_ESM.pdf (58 kb)
ESM 18 (PDF 58 kb)
11030_2012_9366_MOESM19_ESM.pdf (52 kb)
ESM 19 (PDF 53 kb)
11030_2012_9366_MOESM20_ESM.jpg (317 kb)
ESM 20 (JPEG 318 kb)
11030_2012_9366_MOESM21_ESM.jpg (281 kb)
ESM 21 (JPEG 282 kb)
11030_2012_9366_MOESM22_ESM.jpg (312 kb)
ESM 22 (JPEG 313 kb)
11030_2012_9366_MOESM23_ESM.jpg (323 kb)
ESM 23 (JPEG 324 kb)
11030_2012_9366_MOESM24_ESM.jpg (651 kb)
ESM 24 (JPEG 652 kb)
11030_2012_9366_MOESM25_ESM.jpg (660 kb)
ESM 25 (JPEG 661 kb)


  1. 1.
    Dupont J, Souza RF, Suarez PAZ (2002) Chem Rev 102: 3667–3692. doi: 10.1021/cr010338r PubMedCrossRefGoogle Scholar
  2. 2.
    Wang L, Li H, Li P (2009) Task-specific ionic liquid as base, ligand and reaction medium for the palladium-catalyzed Heck reaction. Tetrahedron 65: 364–368. doi: 10.1016/j.tet.2008.10.042 CrossRefGoogle Scholar
  3. 3.
    Valizadeh H, Shockravi A (2009) Task-specific ionic liquid as reagent and reaction medium for the one-pot Horner–Wadsworth–Emmons-type reaction under microwave irradiation. Synth Commun 39: 4341–4349. doi: 10.1080/00397910902898650 CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang T, Han B (2008) Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. Angew Chem Int Ed Engl 47: 1127–1129. doi: 10.1002/anie.200704487 PubMedCrossRefGoogle Scholar
  5. 5.
    Gui J, Liu D, Sun Z, Liu D, Min D, Song B, Peng X (2010) Deep oxidative desulfurization with task-specific ionic liquids: an experimental and computational study. J Mol Catal A Chem 331: 64–70. doi: 10.1016/j.molcata.2010.08.003 CrossRefGoogle Scholar
  6. 6.
    Valizadeh H, Amiri M, Shomali A, Hosseinzadeh F (2011) Ionic liquid 1-(3-trimethoxysilylpropyl)-3-methylimidazolium nitrite as a new reagent for the efficient diazotization of aniline derivatives and in situ synthesis of azo dyes. J Iran Chem Soc 8: 495–501Google Scholar
  7. 7.
    Shaterian HR, Oveisi AR (2011) A simple green approach to the synthesis of 2-amino-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile derivatives catalyzed by 3-hydroxypropanaminium acetate (HPAA) as a new ionic liquid. J Iran Chem Soc 8: 545–552Google Scholar
  8. 8.
    Chiappe C, Marra A, Mele A (2010) Synthesis and applications of ionic liquids derived from natural sugars. Mol Divers 295: 177–195. doi: 10.1007/128_2010_47 Google Scholar
  9. 9.
    Kamal A, Arifuddin M, Rao MV (1999) Enantioselective ring opening of epoxides with trimethylsilyl azide (TMSN3) in the presence of β-cyclodextrin: an efficient route to 1,2-azido alcohols. Tetrahedron Asymmetry 10: 4261–4264. doi: 10.1016/S0957-4166(99)00464-4 CrossRefGoogle Scholar
  10. 10.
    Schildknegt K, Agrios KA, Jeffrey A (1998) Mannich reactions using benzyl azide as a latent N-(phenylamino)methylating agent. Tetrahedron Lett 39: 7687–7690. doi: 10.1016/S0040-4039(98)01721-3 CrossRefGoogle Scholar
  11. 11.
    Bröse S, Gil C, Knepper K, Zimmermann V (2005) Angew Chem Int Ed 44: 5188CrossRefGoogle Scholar
  12. 12.
    Barral K, Moorhouse AD, Moses JE (2007) Efficient conversion of aromatic amines into azides: a one-pot synthesis of triazole linkages. Org Lett 9: 1809–1811. doi: 10.1021/ol070527h PubMedCrossRefGoogle Scholar
  13. 13.
    Biffin MEC, Miller J, Paul DB (1971) Introduction of the azido group. In: Patai S (ed) The chemistry of the azido group. Wiley, New York, p 147Google Scholar
  14. 14.
    Zhang F, Moses JE (2009) Benzyne click chemistry with in situ generated aromatic azides. Org Lett 11: 1587–1590. doi: 10.1021/ol9002338 PubMedCrossRefGoogle Scholar
  15. 15.
    Hubbard A, Okazaki T, Laali KK (2008) Halo- and azidodediazoniation of arenediazonium tetrafluoroborates with trimethylsilyl halides and trimethylsilyl azide and Sandmeyer-type bromodediazoniation with Cu(I)Br in [BMIM][PF6] ionic liquid. J Org Chem 73: 316–319. doi: 10.1021/jo701937e PubMedCrossRefGoogle Scholar
  16. 16.
    Valizadeh H, Heravi MM, Amiri M (2010) Unexpected synthesis of N-methylbenzo[d]isoxazolium hydroxides under microwave irradiation conditions. Mol Divers 14: 575–579. doi: 10.1007/s11030-009-9189-x PubMedCrossRefGoogle Scholar
  17. 17.
    Valizadeh H, Fakhari A (2011) New multicomponent approach for the synthesis of benzo[c]coumarin derivatives over MgO under solvent-free conditions. Mol Divers 15: 233–237. doi: 10.1007/s11030-010-9260-7 PubMedCrossRefGoogle Scholar
  18. 18.
    Valizadeh H, Vaghefi S (2009) One-Pot wittig and Knoevenagel reactions in ionic liquid as convenient methods for the synthesis of coumarin derivatives. Synth Commun 39: 1666–1678. doi: 10.1080/00397910802573163 CrossRefGoogle Scholar
  19. 19.
    Valizadeh H, Shomali A (2012) A new nitrite ionic liquid (IL-ONO) as a nitrosonium source for the efficient diazotization of aniline derivatives and in-situ synthesis of azo dyes. Dye Pigments 92: 1138–1143. doi: 10.1016/j.dyepig.2010.11.010 CrossRefGoogle Scholar
  20. 20.
    Kamalraj VR, Senthil S, Kannan P (2008) One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers. J Mol Struc 892: 210–215. doi: 10.1016/j.molstruc.2008.05.028 CrossRefGoogle Scholar
  21. 21.
    Scriven EFV, Turnbull K (1988) Azides: their preparation and synthetic uses. Chem Rev 88: 297–368. doi: 10.1021/cr00084a001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hassan Valizadeh
    • 1
  • Mohammad Amiri
    • 1
  • Elham Khalili
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesAzarbaijan University of Tarbiat MoallemTabrizIran

Personalised recommendations