Advertisement

Molecular Diversity

, Volume 15, Issue 3, pp 759–768 | Cite as

Application of butenonyl-C-glucosides in the synthesis of pyrazolinyl-, aminopyrimidinyl- and biphenyl methyl-β-d-C-glucopyranosides

  • Seerat Fatima
  • Vivek Parashar Pandey
  • Surendra Singh Bisht
  • Rama P. Tripathi
Full-Length Paper

Abstract

An access to different glycohybrids involving nucleophilic addition of N- and C-nucleophiles to the butenonyl glycosides followed by cyclization and subsequent reactions is reported. In the present communication, three different prototypes, β-d-glucopyranosylmethyl pyrazolines, β-d-glucopyranosylmethyl pyrimidines and β-d-glucopyranosylmethyl biphenyls, were prepared in moderate to good yields.

Graphical Abstract

Keywords

DOS Butenonyl-C-glucosides Glucopyranosylmethyl pyrazolines Glucopyranosylmethyl pyrimidines Glucopyranosylmethyl biphenyls 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2011_9306_MOESM1_ESM.doc (67.6 mb)
ESM 1 (DOC 69,244 kb)
11030_2011_9306_MOESM2_ESM.doc (8.6 mb)
ESM 2 (DOC 8,857 kb)

References

  1. 1.
    Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43: 46–58. doi: 10.1002/anie.20300626 CrossRefGoogle Scholar
  2. 2.
    Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287: 1964–1969. doi: 10.1126/science.287.5460.1964 PubMedCrossRefGoogle Scholar
  3. 3.
    Spring DR (2003) Diversity-oriented synthesis: a challenge for synthetic chemists. Org Biomol Chem 1: 3867–3870. doi: 10.1039/b310752n PubMedCrossRefGoogle Scholar
  4. 4.
    Schreiber SL (2009) Organic chemistry: molecular diversity by design. Nature 457:153–154. doi: 10.1038/457153a (and references cited therein)Google Scholar
  5. 5.
    Wang P, Bertozzi CR (2001) Glycochemistry: principles, synthesis, and applications. Marcel Dekker, New York, 682 pp. doi: 10.1023/A:1023026921864
  6. 6.
    Velter I, Ferla BL, Francesco N (2006) Carbohydrate-based molecular scaffolding. J Carbohydr Chem 25: 97–138. doi: 10.1080/07328300600733020 CrossRefGoogle Scholar
  7. 7.
    Boons GJ, Hale KJ (2008) Organic synthesis with carbohydrates. John Wiley & Sons, New York. doi: 10.1002/9780470760321
  8. 8.
    Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98: 637–674. doi: 10.1021/cr940413g PubMedCrossRefGoogle Scholar
  9. 9.
    Taniguchi N (2007) A sugar-coated switch for cellular growth and arrest. Nat Chem Biol 3: 307–309. doi: 10.1038/nchembio0607-307 PubMedCrossRefGoogle Scholar
  10. 10.
    Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97–130. doi: 10.1093/glycob/3.2.97 PubMedCrossRefGoogle Scholar
  11. 11.
    Lowe JB (2001) Glycosylation, immunity, and autoimmunity. Cell 104: 809–812. doi: 10.1016/S0092-8674(01)00277-X PubMedCrossRefGoogle Scholar
  12. 12.
    Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5: 526–542. doi: 10.1038/nrc1649 PubMedCrossRefGoogle Scholar
  13. 13.
    Clark GF, Oehniger S, Patankar MS, Koistinen R, Dell A, Morris HR, Koistinen H, Seppala M (1996) A role of glycoconjugates in human reproduction: the human feto-embryonic defence system hypothesis. Human Reprod 11: 467–473. doi: 10.1093/HUMREP/11.3.467 Google Scholar
  14. 14.
    Congiu C, Onni V, Vesci L, Castorina M, Pisano C (2010) Synthesis and in vitro antitumor activity of new 4,5-dihydropyrazole derivatives. Bioorg Med Chem 17: 5897–5901. doi: 10.1016/j.bmc.2010.07.037 Google Scholar
  15. 15.
    Ramana MV, Billa VK, Pallela VR, Muralidhar RMR, Boominathan R, Gabriel JL, Reddy EP (2008) Design, synthesis, and biological evaluation of 1-(4-sulfamylphenyl)-3 trifluoromethyl-5-indolyl dihydropyrazoles as cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) inhibitors. Bioorg Med Chem 16: 3907–3917. doi: 10.1016/j.bmc.2008.01.047 CrossRefGoogle Scholar
  16. 16.
    Bhat AR, Athar F, Azam A (2009) New derivatives of 3,5-substituted-1,4,2-dioxazoles: synthesis and activity against Entamoeba histolytica. Eur J Med Chem 44: 926–936. doi: 10.1016/j.ejmech.2008.02.001 PubMedCrossRefGoogle Scholar
  17. 17.
    Ozdemir Z, Kandilci HB, Gumusel BH, Calıs U, Bilgin AA (2007) Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-dihydropyrazole deriv- atives. Eur J Med Chem 42: 373–379. doi: 10.1016/j.ejmech.2006.09.006 PubMedCrossRefGoogle Scholar
  18. 18.
    Ozdemir A, Zitouni GT, Kaplancıklı ZA, Revial G, Guven K (2007) Synthesis an antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-dihydropyrazole derivatives. Eur J Med Chem 42: 403–409. doi: 10.1016/j.ejmech.2006.10.001 PubMedCrossRefGoogle Scholar
  19. 19.
    Milano J, Oliveira SM, Rossato MF, Sauzem PD, Machado P, Beck P, Zanatta N, Martins MAP, Mello CF, Rubin M, Ferreira J, Bonacorso HG (2008) Antinociceptive effect of novel trihalomethyl-substituted dihydropyrazole methyl esters in formalin and hot-plate tests in mice. Eur J Pharmacol 581(1-2): 86–96. doi: 10.1016/j.ejphar.2007.11.042 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhongzhen T, Zhaoxing J, Zhong L, Gonghua S, Qingchun H (2007) Syntheses and biological activities of octahydro-1H-cyclopenta[d]pyrimidine derivatives. J Agric Food Chem 55: 143–147. doi: 10.1021/jf062845l CrossRefGoogle Scholar
  21. 21.
    Alfred RJ, Friederick JM (1972) Fused pyrimidines as potential antimicrobic agent. J Med Chem 12: 1203–1206. doi: 10.1021/jm.00282a001 Google Scholar
  22. 22.
    Malic SR, Svedruzic D, Gazivoda T, Marunovic A, Brundic AH, Nagl A, Balzarini J, Clercq ED, Mintas M (2000) Synthesis and antitumor activities of novel pyrimidine derivatives of 2,3-o,o-dibenzyl-6-deoxy-l-ascorbic acid and 4,5-didehydro-5,6-dideoxy-l-ascorbic acid. J Med Chem 43: 4806–4811. doi: 10.1021/jm0009540 CrossRefGoogle Scholar
  23. 23.
    Ingarsal N, Saravanan G, Amutha P, Nagarajan S (2007) Synthesis, in vitro antibacterial and antifungal evaluations of 2-amino-4-(1-naphthyl)-6-arylpyrimidines. Eur J Med Chem 42: 517–520. doi: 10.1016/i.ejmech.2006.09.012 PubMedCrossRefGoogle Scholar
  24. 24.
    Dai Y, Zhou G, Kurihara H, Ye W, Yao X (2006) Biphenyl glycosides from the fruit of Pyracantha fortuneana. J Nat Prod 69: 1022–1024. doi: 10.1021/np0600853 PubMedCrossRefGoogle Scholar
  25. 25.
    Mascitti V, Preville C (2010) Stereoselective synthesis of a dioxa-bicyclo[3.2.1]octane SGLT2 inhibitor. Org Lett 12: 2940–2943. doi: 10.1021/ol100940w PubMedCrossRefGoogle Scholar
  26. 26.
    Nomura S, Sakamaki S, Hongu M, Kawanishi E, Koga Y, Sakamoto T, Yamamoto Y, Ueta K, Kimata H, Nakayama K, Tsuda-Tsukimoto M (2010) Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J Med Chem 53: 6355–6360. doi: 10.1021/jm100332n PubMedCrossRefGoogle Scholar
  27. 27.
    Tripathi RP, Tiwari VK, Bala L, Sinha S, Srivastava A, Srivastava R, Srivastava BS (2002) Synthesis of glycosylated β-amino acids as new class of antitubercular agents. Eur J Med Chem 37: 773–781. doi: 1016/S0223-5234(02)01398-3 PubMedCrossRefGoogle Scholar
  28. 28.
    Katiyar D, Tiwari VK, Tewari N, Verma SS, Sinha S, Gaikwad A, Srivastava A, Chaturvedi V, Srivastava R, Srivastava BS, Tripathi RP (2005) Synthesis and antimycobacterial activities of glycosylated amino alcohols and amines. Eur J Med Chem 40: 351–360. doi: 10.1016/j.ejmch.2004.12.002 PubMedCrossRefGoogle Scholar
  29. 29.
    Tripathi RP, Tiwari VK, Tewari N, Katiyar D, Saxena N, Sinha S, Gaikwad A, Srivastava A, Chaturvedi V, Manju YK, Srivastava R, Srivastava BS (2005) Synthesis and antitubercular activities of bis-glycosylated diamino alcohols. Bioorg Med Chem 13: 5668–5679. doi: 10.1016/j.bmc.2005.05.021 PubMedCrossRefGoogle Scholar
  30. 30.
    Singh BK, Yadav AK, Kumar B, Gaikwad AN, Sinha SK, Chaturvedi V, Tripathi RP (2008) Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr Res 343: 1153–1162. doi: 10.1016/j.carres.2008.02.013 PubMedCrossRefGoogle Scholar
  31. 31.
    Pandey J, Sharma A, Tiwari VK, Dube D, Ramachandran R, Chaturvedi V, Sinha SK, Mishra NN, Shukla PK, Tripathi RP (2009) Solution-phase synthesis of a library of carbapeptide analogues based on glycosylamino acid scaffolds and their in silico screening and antimicrobial evaluation. J Comb Chem 11: 422–427. doi: 10.1021/cc800206m PubMedCrossRefGoogle Scholar
  32. 32.
    Bisht SS, Fatima S, Tamrakar AK, Rahuja N, Jaiswal N, Srivastava AK, Tripathi RP (2009) Synthetic studies in butenonyl C-glucosides: Preparation of polyfunctional alkanonyl glucosides and their enzyme inhibitory activity. Bioorg Med Chem Lett 19: 2699–2703. doi: 10.1016/j.bmcl.2009.03.136 PubMedCrossRefGoogle Scholar
  33. 33.
    Pandey VP, Bisht SS, Mishra M, Kumar A, Siddiqui MI, Verma A, Mittal M, Sane SA, Gupta S, Tripathi RP (2010) Synthesis and molecular docking studies of 1-phenyl-4-glycosyl-dihydropyridines as potent antileishmanial agents. Eur J Med Chem 45: 2381–2388. doi: 10.1016/j.ejmch.2010.02.018 PubMedCrossRefGoogle Scholar
  34. 34.
    Bisht SS, Pandey J, Sharma A, Tripathi RP (2008) Aldol reaction of βC-glycosylic ketones: synthesis of C-(E)-cinnamoylglycosylic compounds as precursors for new biologically active C-glycosides. Carbohydr Res 243: 1399–1406. doi: 10.1016/i.carres.2008.04.021 CrossRefGoogle Scholar
  35. 35.
    Rodrigous F, Canac Y, Lubineau A (2000) A convenient, one step, synthesis of βC-glycosylic ketones in aqueous media. Chem Commun 20: 2049–2050. doi: 10.1039/b006642g CrossRefGoogle Scholar
  36. 36.
    Wang J, Lei M, Li Q, Ge Z, Wang X, Li R (2009) A novel and efficient direct aldol condensation from ketones and aromatic aldehydes catalyzed by proline-TEA through a new pathway. Tetrahedron 65: 4826–4833. doi: 10.1016/j.tet.2009.04.052 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Seerat Fatima
    • 1
  • Vivek Parashar Pandey
    • 1
  • Surendra Singh Bisht
    • 1
  • Rama P. Tripathi
    • 1
  1. 1.Medicinal and Process Chemistry DivisionCentral Drug Research Institute, CSIRLucknowIndia

Personalised recommendations