Skip to main content

Advertisement

Log in

Diversity-oriented, one-pot, multi-component synthesis of substituted uracil derivatives

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

With the emergence of high throughput screening of bioactive molecules, there is constant need for the development of new strategies for diversity-oriented synthesis. We describe here a novel one-pot multicomponent reaction for the synthesis of uracil derivatives using easily available starting materials. This new synthetic strategy provides easy access to diverse uracil derivatives in moderate to good yields.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Loksha YM, Pedersen EB, Loddo R, La Colla Paolo (2009) Synthesis and anti-HIV-1 activity of 1-substiuted 6-(3-cyanobenzoyl) and [(3-cyanophenyl)fluoromethyl]-5-ethyluracils. Archiv der Pharmazie 342: 501–506. doi:10.1002/ardp.200900058

    Article  PubMed  CAS  Google Scholar 

  2. Safonova TS, Nemeryuk MP, Likhovidova MM, Grineva NA, Keremov AF, Solov’eva NP, Anisimova OS (2008) Synthesis, properties, and reactions of derivatives of 1,3-dimethyl-6-(5’-aminopyrimidylthio-6’)uracils. Pharm Chem J 42: 11–14. doi:10.1007/s11094-008-0046-5

    Article  CAS  Google Scholar 

  3. Maruyama T, Kozai S, Demizu Y, Witvrouw M, Pannecouque C, Balzarini J, Snoecks R, Andrei G, De Clercq E (2006) Synthesis and anti-HIV-1 and anti-HCMV activity of 1-substituted 3-(3,5-dimethylbenzyl)uracil derivatives. Chem Pharm Bull 54: 325–333. doi:10.1248/cpb.54.325

    Article  PubMed  CAS  Google Scholar 

  4. Prachayasittikul S, Sornsongkhram N, Pingaew R, Worachartcheewan A, Ruchirawat S, Prachayasittikul V (2009) Synthesis of N-substituted 5-iodouracils as antimicrobial and anticancer agents. Molecules 14: 2768–2779. doi:10.3390/molecules14082768

    Article  PubMed  CAS  Google Scholar 

  5. Núñez CM, Pavani GM, Díaz-Gavilán M, Rodríguez-Serrano F, Gómez-Vidal AJ, Marchal AJ, Aránega A, Gallo AM, Espinosa A, Campos MJ (2006) Synthesis and anticancer activity studies of novel 1-(2,3-dihydro-5H-1,4-benzodioxepin-3-yl)uracil and (6’-substituted)-7- or 9-(2,3-dihydro-5H-1,4-benzodioxepin-3-yl)-7H- or 9H-purines. Tetrahedron 62: 11724–11733. doi:10.1016/j.tet.2006.09.039

    Article  Google Scholar 

  6. Semenov VE, Voloshina AD, Toroptzova EM, Kulik NV, Zobov VV, Giniyatullin RK, Mikhailov AS, Nikolaev AE, Akamsin VD, Reznik VS (2006) Antibacterial and antifungal activity of acyclic and macrocyclic uracil derivatives with quaternized nitrogen atoms in spacers. Eur J Med Chem 41: 1093–1101. doi:10.1016/j.ejmech.2006.03.030

    Article  PubMed  CAS  Google Scholar 

  7. Zhi C, Long Z, Gambino J, Xu W, Brown CN, Barnes M, Butler M, LaMarr W, Wright EG (2003) Synthesis of substituted 6-anilinouracils and their inhibition of DNA polymerase IIIC and gram-positive bacterial growth. J Med Chem 46: 2731–2739. doi:10.1021/jm020591z

    Article  PubMed  CAS  Google Scholar 

  8. Yagi K, Akimoto K, Mimori N, Miyake T, Kudo M, Arai K, Ishii S (2000) Synthesis and insecticidal/acaricidal activity of novel 3-(2,4,6-trisubstituted phenyl)uracil derivatives. Pest Manag Sci 56: 65–73. doi:10.1002/(SICI)1526-4998(200001)56:1<65::AID-PS90>3.0.CO;2-S

    Article  CAS  Google Scholar 

  9. Herdewijn P (2000) Heterocyclic modifications of oligonucleotides and antisense technology. Antisense Nucleic Acid Drug Dev 10: 297–310. doi:10.1089/108729000421475

    Article  PubMed  CAS  Google Scholar 

  10. Kurreck J (2003) Antisense technologies: improvement through novel chemical modifications. Eur J Biochem 270: 1628–1644. doi:10.1046/j.1432-1033.2003.03555.x

    Article  PubMed  CAS  Google Scholar 

  11. Iyer RP, Roland A, Zhou W, Ghosh K (1999) Modified oligonucleotides—syntheses, properties, and applications. Curr Opin Mol Ther 1: 344–358

    CAS  Google Scholar 

  12. Chiu Yl, Rana Tm (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9: 1034–1048. doi:10.1261/rna.5103703

    Article  PubMed  CAS  Google Scholar 

  13. Fustero S, Piera J, Sanz-Cervera FJ, Catalán S, Ramírezde Arellano C (2004) A versatile synthesis of fluorinated uracils in solution and on solid-phase. Org Lett 6: 1417–1420. doi:10.1021/ol049668z

    Article  PubMed  CAS  Google Scholar 

  14. Nieto MR, Coelho A, Martínez A, Stefanachi A, Sotelo E, Raviña E (2003) Synthesis of 1-substituted-6-methyluracils. Chem Pharm Bull 51: 1025–1028. doi:10.1248/cpb.51.1025

    Article  PubMed  CAS  Google Scholar 

  15. Gabel N, Binkley S (1958) Synthesis of 1-aryluracils. J Org Chem 23: 643–645. doi:10.1021/jo01098a629

    Article  Google Scholar 

  16. Senda S, Hirota K, Notani J (1972) Pyrimidine and related compounds. XVI. Synthesis of 1,3-disubstituted 5-cyanouracil derivatives and related compounds. Chem Pharm Bull 20: 1380–1388

    CAS  Google Scholar 

  17. Snyder RH, Jones ER (1946) Synthesis of 4-hydroxyquinolines. III. A direct synthesis of β-substituted acrylic esters. J Am Chem Soc 68: 1253–1255. doi:10.1021/ja01211a034

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam S. Degani.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 773 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedgaonkar, Y.Y., Degani, M.S. & Iyer, R.P. Diversity-oriented, one-pot, multi-component synthesis of substituted uracil derivatives. Mol Divers 15, 263–267 (2011). https://doi.org/10.1007/s11030-010-9266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9266-1

Keywords

Navigation