Molecular Diversity

, Volume 15, Issue 1, pp 125–134 | Cite as

Supported heteropoly acids offering strong option for efficient and cleaner processing for the synthesis of imidazole derivatives under solvent-free condition

  • Ezzat Rafiee
  • Houri Mahdavi
  • Mohammad Joshaghani
Full-Length Paper


A series of 12-phosphotungstic acid (PWA) supported on various porous carriers, such as silica, alumina, titania, clay, and carbon were prepared, and their catalytic performance evaluated in the synthesis of imidazoles in solvent-free condition. It was found that PWA supported on silica (PWA/SiO2) showed higher activity compared to other catalysts. The observed behavior has more or less correlated with the acidic characteristic found through the potentiometrically titrated acidic sites and proton availability. The catalyst was characterized by FTIR, XRD, TGA/DSC, BET, and SEM. The presence of the Keggin structure can be followed by the above techniques, eliminating any doubt about the collapse of the supported anion. It can be observed that the process tolerates both electron donating and electron withdrawing substituents on the aldehyde with both benzil and benzoin. The general applicability of the method is demonstrated by using both benzylic and aromatic amines. The yields obtained were excellent without forming any side products such as trisubstituted imidazoles, which are normally produced in the presence of strong acids. The protocol developed using PWA/SiO2 is superior in terms of process simplicity, reusable catalyst, high yields, short reaction time, and preclusion of toxic solvent.


Imidazoles Supported heteropoly acid Solvent free Benzil Benzoin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98: 199–218. doi: 10.1021/cr960401q PubMedCrossRefGoogle Scholar
  2. 2.
    Müller A, Roy S (2003) En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science. Coord Chem Rev 245: 153–166. doi: 10.1016/S0010-8545(03)00110-3 CrossRefGoogle Scholar
  3. 3.
    Liu TB, Diemann E, Li HL, Dress AWM, Müller A (2003) Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 426: 59–61. doi: 10.1038/nature02036 PubMedCrossRefGoogle Scholar
  4. 4.
    Frantz DE, Morency L, Soheili A, Murry JA, Grabowski EJJ, Tillyer RD (2004) Synthesis of substituted imidazoles via organocatalysis. Org Lett 6: 843–846. doi: 10.1021/ol0498803 PubMedCrossRefGoogle Scholar
  5. 5.
    Sisko J, Mellinger M (2002) Development of a general process for the synthesis of highly substituted imidazoles. Pure Appl Chem 74: 1349–1358. doi: 10.1351/pac200274081349 CrossRefGoogle Scholar
  6. 6.
    Nelson WM (1998) Green chemistry. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Liu J, Chem J, Zhao J, Zhao Y, Li L, Zhang H (2003) A modified procedure for the synthesis of 1-arylimidazoles. Synthesis 2661–2666. doi: 10.1055/s-2003-42444
  8. 8.
    Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100: 1025–1074. doi: 10.1021/cr940089p PubMedCrossRefGoogle Scholar
  9. 9.
    Cave GWV, Raston CL, Scott JL (2001) Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem Commun 2159–2169. doi: 10.1039/b106677n
  10. 10.
    Cui B, Zheng BL, He K, Zheng QY (2003) Imidazole alkaloids from Lepidium meyenii. J Nat Prod 66: 1101–1103. doi: 10.1021/np030031i PubMedCrossRefGoogle Scholar
  11. 11.
    Abrahams SL, Hazen RJ, Batson AG, Phillips AP (1989) Trifenagrel: a chemically novel platelet aggregation inhibitor. J Pharmacol Exp Ther 249: 359–365. doi: 10.1042/jpet.106.113084 PubMedGoogle Scholar
  12. 12.
    Phillips AP, White HL, Rosen S (1982) European Patent 58890 (A1)Google Scholar
  13. 13.
    Misono M (2001) Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state. Chem Commun 1141–1153. doi: 10.1039/b102573m
  14. 14.
    Blank JW, Durant GJ, Emmett JC, Ganellin CR (1974) Sulphur-methylene isosterism in the developent of metiamide, a new histamine H2-receptor antagonist. Nature 248: 65–67. doi: 10.1038/248065a0 CrossRefGoogle Scholar
  15. 15.
    Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal M, Heys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi JP, White JR, Adams JL, Young PR (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–745. doi: 10.1038/372739a0 PubMedCrossRefGoogle Scholar
  16. 16.
    Maier T, Schmierer R, Bauer K, Bieringer H, Buerstell H, Sachse B (1989) US Patent, 4 820 335.Google Scholar
  17. 17.
    Schmierer R, Mildenberger H, Buerstell H (1987) German Patent 361:464Google Scholar
  18. 18.
    Heeres J, Backx LJJ, Mostmans JH, Van Custem J (1979) Antimycotic imidazoles. Part 4: synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent. J Med Chem 22: 1003–1005. doi: 10.1021/jm00194a023 PubMedCrossRefGoogle Scholar
  19. 19.
    Antolini M, Bozzoli A, Ghiron C, Kennedy G, Rossi T, Ursini A (1999) Analogues of 4,5-bis(3,5-dichlorophenyl)-2-trifluoromethyl-1H-imidazole as potential antibacterial agents. Bioorg Med Chem Lett 9: 1023–1028 PII:S0960-894X(99)00112-2PubMedCrossRefGoogle Scholar
  20. 20.
    Liberatore A, Schulz J, Pommier J, Barthelemy M, Huchet M, Chabrier P, Bigg D (2004) 2-Alkyl-4-arylimidazoles: structurally novel sodium channel modulators. Bioorg Med Chem Lett 14: 3521–3523. doi: 10.1016/j.bmcl.2004.04.059 PubMedCrossRefGoogle Scholar
  21. 21.
    Cheung DW, Daniel EE (1980) Imidazole inhibits a temperature-dependent component of mammalian skeletal muscle action potential. Nature 283: 485–486. doi: 10.1038/283485a0 PubMedCrossRefGoogle Scholar
  22. 22.
    de Laszlo SE, Hacker C, Li B, Kim D, MacCoss M, Mantlo N, Pivnichny JV, Colwell L, Koch GE, Cascieri MA, Hagmann WK (1999) Potent, orally absorbed glucagon receptor antagonists. Bioorg Med Chem Lett 9: 641–646 PII: S0960-894X(99)00081-5PubMedCrossRefGoogle Scholar
  23. 23.
    Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley VCH, WeinheimGoogle Scholar
  24. 24.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99: 2071–2084. doi: 10.1021/cr980032t PubMedCrossRefGoogle Scholar
  25. 25.
    Lee HL, Bang M, Pak CS (2005) Efficient synthesis of arylsulfamides by reaction of amines with arylsulfamoyl imidazolium triflate. Tetrahedron Lett 46: 7139–7142. doi: 10.1016/j.tetlet.2005.08.092 CrossRefGoogle Scholar
  26. 26.
    Storey JMD, Williamson C (2005) Imidazole based solid-supported catalysts for the benzoin condensation. Tetrahedron Lett 46: 7337–7339. doi: 10.1016/j.tetlet.2005.08.141 CrossRefGoogle Scholar
  27. 27.
    Herrmann WA (2002) N-Heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed 41: 1290–1309. doi: 10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y CrossRefGoogle Scholar
  28. 28.
    Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Stable carbenes. Chem Rev 100: 39–92. doi: 10.1021/cr940472u PubMedCrossRefGoogle Scholar
  29. 29.
    Herrmann WA, Köcher C (1997) N-Heterocyclic carbenes. Angew Chem Int Ed Eng 36: 2162–2187. doi: 10.1002/anie.199721621 CrossRefGoogle Scholar
  30. 30.
    Kantevari S, Vuppalapati SVN, Biradar DO, Nagarapu L (2007) Highly efficient, one-pot, solvent-free synthesis of tetrasubstituted imidazoles using HClO4–SiO2 as novel heterogeneous catalyst. J Mol Catal A 266: 109–113. doi: 10.1016/j.molcata.2006.10.048 CrossRefGoogle Scholar
  31. 31.
    Sarshar S, Siev D, Mjalli AMM (1996) Imidazole libraries on solid support. Tetrahedron Lett 37: 835–838. doi: 10.1016/0040-4039(95)02334-8 CrossRefGoogle Scholar
  32. 32.
    Acke DRJ, Orru RVA, Stevens CV (2006) Continuous synthesis of tri- and tetrasubstituted imidazoles via a multicomponent reaction under microreactor conditions. QSAR Comb Sci 25: 474–483. doi: 10.1002/qsar.200540194 CrossRefGoogle Scholar
  33. 33.
    Nagarapu L, Apuri S, Kantevari S (2007) Potassium dodecatugstocobaltate trihydrate (K5CoW12O40·3H2O): a mild and efficient reusable catalyst for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. J Mol Catal A 266: 104–108. doi: 10.1016/j.molcata.2006.10.056 CrossRefGoogle Scholar
  34. 34.
    Balalaie S, Hashemi MM, Akhbari M (2003) A novel one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Tetrahedron Lett 44: 1709–1711 PII: S0040-4039(03)00018-2CrossRefGoogle Scholar
  35. 35.
    Karimi AR, Alimohammadi Z, Azizian J, Mohammadi AA, Mhammadizadeh MR (2006) Solvent-free synthesis of tetrasubstituted imidazoles on silica gel/NaHSO4 support. Catal Commun 7: 728–732. doi: 10.1016/j.catcom.2006.04.004 CrossRefGoogle Scholar
  36. 36.
    Heravi MM, Derikvand F, Bamoharram FF (2007) Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. J Mol Catal A 263: 112–114. doi: 10.1016/j.molcata.2006.08.048 CrossRefGoogle Scholar
  37. 37.
    Kidwai M, Mothsra P (2006) A one-pot synthesis of 1,2,4,5-tetraarylimidazoles using molecular iodine as an efficient catalyst. Tetrahedron Lett 47: 5029–5031. doi: 10.1016/j.tetlet.2006.05.097 CrossRefGoogle Scholar
  38. 38.
    Balalaie S, Arabanian A (2000) One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem 2: 274–276. doi: 10.1039/b006201o CrossRefGoogle Scholar
  39. 39.
    Sadeghi B, Mirjalili BBF, Hashemi MM (2008) A one-pot synthesis of 1,2,4,5-tetraarylimidazoles using molecular iodine as an efficient catalyst. Tetrahedron Lett 49: 2575–2577. doi: 10.1016/j.tetlet.2008.02.100 CrossRefGoogle Scholar
  40. 40.
    Rafiee E, Rashidzadeh S, Azad A (2007) Silica-supported heteropoly acids: highly efficient catalysts for synthesis of α-aminonitriles, using trimethylsilyl cyanide or potassium cyanide. J Mol Catal A 261: 49–52. doi: 10.1016/j.molcata.2006.07.058 CrossRefGoogle Scholar
  41. 41.
    Rafiee E, Paknezhad F, Shahebrahimi S, Joshaghani M, Eavani S, Rashidzadeh S (2008) Acid catalysis of different supported heteropoly acids for a one-pot synthesis of β-acetamido ketones. J Mol Catal A 282: 92–98. doi: 10.1016/j.molcata.2007.11.021 CrossRefGoogle Scholar
  42. 42.
    McKillop A, Swann BP, Taylor EC (1973) Thallium in organic synthesis. XXXVIII. Oxidation of chalcones, deoxybenzoins, and benzoins with thallium(III) nitrate (TTN). J Am Chem Soc 95: 3641–3645. doi: 10.1021/ja00792a029 CrossRefGoogle Scholar
  43. 43.
    Park S, Know OH, Kim S, Park S, Choi MG, Cha M, Park SY, Jang DJ (2005) Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal. J Am Chem Soc 127: 10070–10074. doi: 10.1021/ja0508727 PubMedCrossRefGoogle Scholar
  44. 44.
    Rafiee E, Shahbazi F, Joshaghani M, Tork F (2005) The silica supported H3PW12O40 (a heteropoly acid) as an efficient and reusable catalyst for a one-pot synthesis of β-acetamido ketones by Dakin–West reaction. J Mol Catal A 242: 129–134. doi: 10.1016/j.molcata.2005.08.005 CrossRefGoogle Scholar
  45. 45.
    Kozhevnikova EF, Rafiee E, Kozhevnikov V (2004) Fries rearrangement of aryl esters catalysed by heteropoly acid: catalyst regeneration and reuse. Appl Catal A 260: 25–34. doi: 10.1016/j.apcata.2003.10.008 CrossRefGoogle Scholar
  46. 46.
    Wlodarczyk R, Chojak M, Miecznikowski K, Kolary A, Kulesza PJ, Marassi R (2006) Electroreduction of oxygen at polyoxometallate-modified glassy carbon-supported Pt nanoparticles. J Power Sources 159: 802–809. doi: 10.1016/j.jpowsour.2005.11.061 CrossRefGoogle Scholar
  47. 47.
    Ojani R, Rahmanifar M, Naderi P (2008) Electrocatalytic reduction of nitrite by phosphotungstic heteropolyanion. Application for its simple and selective determination. Electroanalysis 20: 1092–1098. doi: 10.1002/elan.200704157 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ezzat Rafiee
    • 1
    • 2
  • Houri Mahdavi
    • 1
  • Mohammad Joshaghani
    • 1
    • 2
  1. 1.Faculty of ChemistryRazi UniversityKermanshahIran
  2. 2.Kermanshah Oil Refining CompanyKermanshahIran

Personalised recommendations