Molecular Diversity

, Volume 14, Issue 4, pp 833–839 | Cite as

Electrochemically induced multicomponent assembling of isatins, 4-hydroxyquinolin-2(1H)-one and malononitrile: a convenient and efficient way to functionalized spirocyclic [indole-3,4′-pyrano[3,2-c]quinoline] scaffold

  • Michail N. Elinson
  • Valentina M. Merkulova
  • Alexey I. Ilovaisky
  • Dmitry V. Demchuk
  • Pavel A. Belyakov
  • Gennady I. Nikishin
Short Communication


Electrochemically induced catalytic multicomponent transformation of isatins, 4-hydroxyquinolin-2(1H)-one and malononitrile in ethanol in an undivided cell in the presence of sodium bromide as an electrolyte results in the formation of spirooxindoles with fused functionalized indole-3,4′-pyrano[3,2-c]quinoline] scaffold in 75–91% substance yields and 500-600% current yield. The developed efficient electrocatalytic approach to medicinally relevant [indole-3,4′-pyrano[3,2-c]quinoline] scaffold is beneficial from the viewpoint of diversity-oriented large-scale processes and represents a novel example of facile environmentally benign synthetic concept for electrocatalytic multicomponent reactions.


Electrocatalysis Multicomponent reactions Pyranoquinoline Spirooxindole Isatin C–H acids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans BE, Rittle KE, Bock G, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS, Chang RSL, Lotti VG, Cerino DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirshfield J (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31: 2235–2246. doi: 10.1021/jm00120a002 CrossRefPubMedGoogle Scholar
  2. 2.
    Poupaert J, Carato P, Colacino E (2005) 2(3H)-Benzoxazolone and bioisosters as “Privileged Scaffold” in the design of pharmacological probes. Curr Med Chem 12: 877–885CrossRefPubMedGoogle Scholar
  3. 3.
    Williams RM, Cox RJ (2003) Paraherquamides, brevianamides, and asperparalines: laboratory synthesis and biosynthesis. An interim report. Acc Chem Res 36: 127–139. doi: 10.1021/ar020229e CrossRefPubMedGoogle Scholar
  4. 4.
    Cui CB, Kakeya H, Osada H (1996) Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 52: 12651–12666. doi: 10.1016/0040-4020(96)00737-5 CrossRefGoogle Scholar
  5. 5.
    Leclercq J, de Pauw-Gillet MC, Bassleer R, Angenot L (1986) Screening of cytotoxic activities of Strychnos alkaloids (methods and results). J Ethnopharmacol 15: 305–316. doi: 10.1016/0378-8741(86)90169-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Michael JP (2008) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 25: 166–187. doi: 10.1039/b612168n CrossRefPubMedGoogle Scholar
  7. 7.
    Chen IS, Tsai IW, Teng CM, Chen JJ, Chang IL, Ko FN, Lu MC, Pezzuto JM (1997) Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry 46: 525–529. doi: 10.1016/S0031-9422(97)00280-X CrossRefGoogle Scholar
  8. 8.
    Brader G, Bacher M, Greger H, Hofer O (1996) Pyranoquinolones and acridones from Vepris bilocularis. Phytochemistry 42: 881–884. doi: 10.1016/0031-9422(95)00922-1 CrossRefGoogle Scholar
  9. 9.
    Chen JJ, Chen PH, Liao CH, Huang SY, Chen IS (2007) New phenylpropenoids, bis(1-phenylethyl)phenols, bisquinolinone alkaloid, and anti-inflammatory constituents from Zanthoxylum integfifoliolum. J Nat Prod 70: 1444–1448. doi: 10.1021/np070186g CrossRefPubMedGoogle Scholar
  10. 10.
    Kamperdick C, Van NH, Van ST, Adam G (1999) Bisquinolinone alkaloids from Melicope ptelefolia. Phytochemistry 50: 177–181. doi: 10.1016/S0031-9422(98)00500-7 CrossRefGoogle Scholar
  11. 11.
    Chen IS, Wu SJ, Tsai IL, Wu TS, Pezzuto JM, Lu MC, Chai H, Suh N, Teng CM (1994) Chemical and bioactive constituents from Zanthoxylum simulants. J Nat Prod 57: 1206–1211. doi: 10.1021/np50111a003 CrossRefPubMedGoogle Scholar
  12. 12.
    Magedov IV, Manpadi M, Ogasawara MA, Dhawan AS, Rodelj S, Van slambrouck S, Steelant WFA, Evdokimov NM, Uglinskii PY, Elias EM, Knee EJ, Tongwa P, Antipin MY, Kornienko A (2008) Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferactive and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones. J Med Chem 51:2561–2570. doi: 10.1021/jm701499n Google Scholar
  13. 13.
    Abd El-Nabi HA (1997) A novel one step synthesis of pyrano[3,2-c]quinolines and a transformation into 3,3-bis-(4-hydroxy-2-quinolone]arylmethanes. Pharmazie 52: 28–32Google Scholar
  14. 14.
    El-Taweel FMAA, Sowellim SZA, Elagamey AG (1998) Studies with polyfunctionally substituted heteroarenes: new synthesis of benzo[c]quinolones and pyrano[3,2-c]quinoline derivatives. Boll Chim Farm 137: 323–325Google Scholar
  15. 15.
    Dandia A, Sangeeta G, Jain AK (2007) An efficient synthesis of fluorine-containing substituted spiro[piperidine-4,4′-pyrano[3,2-c]quinoline]-3′-carbonitrile by nonconventional methods. J Fluor Chem 128: 1454–1460. doi: 10.1016/j.jfluchem.2007.08.002 CrossRefGoogle Scholar
  16. 16.
    Elinson MN, Feducovich SK, Lizunova TL, Nikishin GI (2000) Electrochemical transformation of malononitrile and carbonyl compounds into functionally substituted cyclopropanes: electrocatalytic variant of the Wideqvist reaction. Tetrahedron 56: 3063–3069. doi: 10.1016/S0040-4020(00)00195-2 CrossRefGoogle Scholar
  17. 17.
    Elinson MN, Dorofeev AS, Miloserdov FM, Ilovaisky AI, Feducovich SK, Belyakov PA, Nikishin GI (2008) Catalysis of salicylaldehydes and two different C–H acids with electricity: first example of an efficient multicomponent approach to the design of functionalized medicinally privileged 2-amino-4H-chromene scaffold. Adv Synth Catal 350: 591–601. doi: 10.1002/adsc.200700493 CrossRefGoogle Scholar
  18. 18.
    Elinson MN, Dorofeev AS, Feducovich SK, Nasybullin RF, Gorbunov SV, Miloserdov FM, Nikishin GI (2006) The implication of electrocatalysis in MCR strategy: electrocatalytic multicomponent transformation of cyclic 1,3-diketones, aldehydes and malononitrile into substituted 5,6,7,8-tetrahydro-4H-chromenes. Eur J Org Chem 4335–4339. doi: 10.1002/ejoc.200600544
  19. 19.
    Elinson MN, Dorofeev AS, Feducovich SK, Nasybullin RF, Gorbunov SV, Miloserdov FM, Stepanov NO, Nikishin GI (2006) Electrochemically induced chain transformation of salicylaldehydes and alkyl cyanoacetates into substituted 4H-chromenes. Tetrahedron Lett 47: 7629–7633. doi: 10.1016/j.tetlet.2006.08.053 CrossRefGoogle Scholar
  20. 20.
    Elinson MN, Dorofeev AS, Feducovich SK, Nasybullin RF, Gorbunov SV, Nikishin GI (2006) Electrocatalytic chain transformation of salicylaldehydes and malononitrile into substituted 4H-chromenes. Electrochem Commun 1567–1571. doi: 10.1016/j.elecom.2006.07.009
  21. 21.
    Elinson MN, Ilovaisky AI, Dorofeev AS, Merkulova VM, Stepanov NO, Miloserdov FM, Ogibin YN, Nikishin GI (2007) Electrocatalytic multicomponent transformation of cyclic 1,3-diketones, isatins, and malononitrile: facile and convenient way to functionalized spirocyclic (5,6,7,8-tetrahydro-4H-chromene)-4,3′-oxindole system. Tetrahedron 63: 10543–10548. doi: 10.1016/j.tet.2007.07.080 CrossRefGoogle Scholar
  22. 22.
    Elinson MN, Ilovaisky AI, Merkulova VM, Demchuk DV, Belyakov PA, Ogibin YuN, Nikishin GI (2008) The electrocatalytic cascade assemling of isatins, malononitrile and N-alkyl barbiturates: an efficient multicomponent approach to the spiro[indole-3,5′-pyrano[2,3-d]pyrimidine] framework. Electrochim Acta 53: 8346–8350. doi: 10.1016/j.electacta.2008.06.044 CrossRefGoogle Scholar
  23. 23.
    Elinson MN, Dorofeev AS, Miloserdov FM, Nikishin GI (2009) The electrocatalytic multicomponent assemling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: facile and convenient way to functionalized spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazole]system. Mol Divers 13: 47–52. doi: 10.1007/s11030-008-9100-1 CrossRefPubMedGoogle Scholar
  24. 24.
    Patai S, Israeli Y (1960) The kinetics and mechanisms of carbonyl–methylene condensations. Part VII. The reaction of malononitrile with aromatic aldehydes in ethanol. J Chem Soc 2025–2030. doi: 10.1039/JR9600002025

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Michail N. Elinson
    • 1
  • Valentina M. Merkulova
    • 1
  • Alexey I. Ilovaisky
    • 1
  • Dmitry V. Demchuk
    • 1
  • Pavel A. Belyakov
    • 1
  • Gennady I. Nikishin
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryMoscowRussia

Personalised recommendations