Molecular Diversity

, Volume 14, Issue 2, pp 257–276 | Cite as

A computational study on cannabinoid receptors and potent bioactive cannabinoid ligands: homology modeling, docking, de novo drug design and molecular dynamics analysis

  • Serdar Durdagi
  • Manthos G. Papadopoulos
  • Panagiotis G. Zoumpoulakis
  • Catherine Koukoulitsa
  • Thomas Mavromoustakos
Full-Length Paper


When X-ray structure of a ligand-bound receptor is not available, homology models of the protein of interest can be used to obtain the ligand-binding cavities. The steroelectronic properties of these cavities are directly related to the performed molecular model coordinates. Thus, the use of different template structures for homology may result in variation of ligand-binding modes. We have recently reported the MD simulations of a potent CB ligand at bovine rhodopsin-based CB1 and CB2 receptors (Durdagi et al., Bioorg Med Chem 16:7377–7387, 2008). In this present study, a homology modeling study based on the β2-adrenergic receptor for both CB1 and CB2 receptors was performed, and the results were compared with rhodopsin-based models. In addition, the role of membrane bilayers to the adopted conformations of potent AMG3 CB ligand has been analyzed for receptor-free and membrane-associated receptor systems. The performed MD trajectory analysis results have shown that gauche conformations at the terminal segment of the alkyl side chain of AMG3 are not favored in solution. Different adopting dihedral angles defined between aromatic and dithiolane rings at the active sites of the CB1 and CB2 receptors, which are adapted lead to different alkyl side chain orientations and thus, may give clues to the medicinal chemists to synthesize more selective CB ligands. The binding sites of receptors derived by rhodopsin-based models have been regenerated using the β2-adrenergic based template receptors. The re-obtained models confirmed the ligand-binding pockets that were derived based on rhodopsin.


Cannabinoids AMG3 Conformational analysis 3D QSAR Homology modeling CB1 and CB2 receptors 





First cannabionoid receptor


Second cannabinoid receptor


Molecular dynamics






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2009_9166_MOESM1_ESM.doc (2.8 mb)
ESM 1 (DOC 2.75 MB)


  1. 1.
    Höltje HD, Sippl W, Rognan D, Folkers G (2003) Molecular modeling: basic principles and applications. Wiley-VCH Verlog GmbH, WeinheimGoogle Scholar
  2. 2.
    Ghose AK, Crippen GM, Revenkar GR, Smee DF, McKernan PA, Robins RK (1989) Analysis of the in vitro antiviral activity of certain ribonucleosides against parainfluenza virus using a novel computer aided receptor modeling procedure. J Med Chem 32: 746–756CrossRefPubMedGoogle Scholar
  3. 3.
    Lenkinski RE, Stephens RL, Krishna NR (1981) Conformation of angiotensin II. Evidence for a specific hydrogen bonded conformation. Biochemistry 20: 3122–3126CrossRefPubMedGoogle Scholar
  4. 4.
    Sakarellos C, Lintner K, Piriou F, Fermandjian S (1983) Conformation of the central sequence of angiotensin II and analogs. Biopolymers 22: 663–687CrossRefPubMedGoogle Scholar
  5. 5.
    Fermandjian S, Fromageot P, Tistchenko AM, Leicknam JP, Lutz M (1972) Angiotensin II conformations. Infrared and Raman studies. Eur J Biochem 28: 174–182CrossRefPubMedGoogle Scholar
  6. 6.
    Mavromoustakos T, Theodoropoulou E, Zervou M, Kourouli T, Papahatjis DP (1999) Structure elucidation and conformational properties of synthetic cannabinoids (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethyl-1-hydroxy-6H-dibenzo [b,d]pyranyl)-2-hexyl-1,3-dithiolane and its methylated analog. J Pharm Biomed Anal 18: 947–956CrossRefPubMedGoogle Scholar
  7. 7.
    Papahatjis DP, Nikas SP, Kourouli T, Chari R, Xu W, Pertwee RG, Makriyannis A (2003) Pharmacophoric requirements for the cannabinoid side chain. Probing the cannabinoid receptor subsite at C1′. J Med Chem 46: 3221–3229CrossRefPubMedGoogle Scholar
  8. 8.
    Honoria KM, da Silva ABF (2002) A theoretical study on the influence of the frontier orbitals HOMO and LUMO and the size of C4 and C2 substituents in the psychoactivity of cannabinoid compounds. Theochemistry 578: 111–117Google Scholar
  9. 9.
    Keimowitz AR, Martin BR, Razdan RK, Crocker PJ, Mascarella SW, Thomas BF (2000) QSAR analysis of Δ8-THC analogues: relationship of side-chain conformation to cannabinoid receptor affinity and pharmacological potency. J Med Chem 43: 59–70CrossRefPubMedGoogle Scholar
  10. 10.
    Schmetzer S, Greenidge P, Kovar KA, Schulze-Alexandru M, Folkers G (1997) Structure-activity relationships of cannabinoids: a joint CoMFA and pseudoreceptor modelling study. J Comput Aided Mol Des 11: 278–292CrossRefPubMedGoogle Scholar
  11. 11.
    Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) Side-chain flexibility in proteins upon ligand binding. Proteins Struct Funct Bioinf 39: 261–268CrossRefGoogle Scholar
  12. 12.
    Jorgensen WL (1991) Rusting of the lock and key model for protein-ligand binding. Science 254: 954–963CrossRefPubMedGoogle Scholar
  13. 13.
    Hasegawa K, Arakawa M, Funatsu K (2003) Simultaneous determination of bioactive conformations and alignment rules by multi-way PLS modeling. Compt Biol Chem 27: 211–216CrossRefGoogle Scholar
  14. 14.
    Papahatjis DP, Kourouli T, Abadji V, Goutopoulos A, Makriyannis A (1998) Pharmacophoric requirements for cannabinoid side chains: multiple bond and C1′-substituted Δ8-tetrahydrocannabinols. J Med Chem 41: 1195–1200CrossRefPubMedGoogle Scholar
  15. 15.
    Razdan RK (1986) Structure-activity relationships in cannabinoids. Pharmacol Rev 38: 75–149PubMedGoogle Scholar
  16. 16.
    Makriyannis A, Rapaka RS (1990) The molecular basis of cannabinoid activity. Life Sci 47: 2173–2184CrossRefPubMedGoogle Scholar
  17. 17.
    Durdagi S, Kapou A, Kourouli T, Andreou T, Nikas SP, Nahmias VR, Papahatjis DP, Papadopoulos MG, Mavromoustakos T (2007) The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1′ position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2. J Med Chem 50: 2875–2885CrossRefPubMedGoogle Scholar
  18. 18.
    Durdagi S, Papadopoulos MG, Papahatjis DP, Mavromoustakos T (2007) Combined 3D QSAR and molecular docking studies to reveal novel cannabinoid ligands with optimum binding activity. Bioorg Med Chem Lett 17: 6754–6763CrossRefPubMedGoogle Scholar
  19. 19.
    Xie XQ, Pavlopoulos S, DiMeglio CM, Makriyannis A (1998) Conformational studies on a diastereoisomeric pair of tricyclic nonclassical cannabinoids by NMR spectroscopy and computer molecular modeling. J Med Chem 41: 167–174CrossRefPubMedGoogle Scholar
  20. 20.
    Xie XQ, Yang DP, Melvin LS, Makriyannis A (1994) Conformational analysis of the prototype nonclassical cannabinoid CP-47,497, using 2D NMR and computer molecular modeling. J Med Chem 37: 1418–1426CrossRefPubMedGoogle Scholar
  21. 21.
    Xie XQ, Melvin LS, Makriyannis A (1996) The conformational properties of the highly selective cannabinoid receptor ligand CP-55,940. J Biol Chem 71: 169–189Google Scholar
  22. 22.
    Reggio PH (2003) Pharmacophores for ligand recognition and activation/inactivation of the cannabinoid receptors. Curr Pharm Des 99: 1607–1633CrossRefGoogle Scholar
  23. 23.
    Song ZH, Slowey CA, Hurst DP, Reggio PH (1999) The difference between the CB1 and CB2 cannabinoid receptors at position 5.46. Is crucial for the selectivity of WIN55212-2 for CB2. Mol Pharmacol 56: 834–840PubMedGoogle Scholar
  24. 24.
    Makriyannis A (1995) The role of cell membranes in cannabinoid activity. In: Pertwee R (eds) Cannabinoid receptors. Academic Press Limited, London, pp 87–115Google Scholar
  25. 25.
    Mavromoustakos T, Zervou M, Zoumpoulakis P, Kyrikou I, Benetis NP, Polevaya L, Roumelioti P, Giatas N, Zoga A, Moutevelis Minakakis P, Kolocouris A, Vlahakos D, Golic Grdadolnik S, Matsoukas J (2004) Conformation and bioactivity. Design and discovery of novel antihypertensive drugs. Curr Top Med Chem 4: 385–401CrossRefPubMedGoogle Scholar
  26. 26.
    Mavromoustakos T, Papahatjis D, Laggner P (2001) Differential membrane fluidization by active and inactive cannabinoid analogues. Biochim Biophys Acta 1512: 183–190CrossRefPubMedGoogle Scholar
  27. 27.
    Mavromoustakos T, Daliani I (1999) Effects of cannabinoids in membrane bilayers containing cholesterol. Biochim Biophys Acta 1420: 252–265CrossRefPubMedGoogle Scholar
  28. 28.
    Mavromoustakos T, Yang DP, Makriyannis A (1995) Small angle X-ray diffraction and differential scanning calorimetric studies on O-methyl-(-)-Δ8-tetrahydrocannabinol and its 5′ iodinated derivative in membrane bilayers. Biochim Biophys Acta 1237: 183–188CrossRefPubMedGoogle Scholar
  29. 29.
    Yang DP, Mavromoustakos T, Beshah K, Makriyannis A (1992) Amphipathic interactions of cannabinoids with membranes. A comparison between Δ8-THC and its O-methyl analog using differential scanning calorimetry, X-ray diffraction and solid state deuterium NMR experiments. Biochim Biophys Acta 1103: 25–36CrossRefPubMedGoogle Scholar
  30. 30.
    Van der Schyf CJ, Mavromoustakos T, Makriyannis A (1988) The conformation of (-)8α and (-)8β-hydroxy-δ 9-tetrahydrocannabinols and their interactions with model membranes. Life Sci 42: 2231–2239CrossRefPubMedGoogle Scholar
  31. 31.
    Mavromoustakos T, Yang DP, Broderick W, Fournier D, Herbette LG, Makriyannis A (1991) Small angle X-ray diffraction studies on the topography of cannabinoids in synaptic plasma membranes. Pharmacol Biochem Behav 40: 547–552CrossRefPubMedGoogle Scholar
  32. 32.
    Yang DP, Mavromoustakos T, Makriyannis A (1993) Small angle X-Ray diffraction studies of Δ8-tetrahydrocannabinol and its O-methyl analog in membranes. Life Sci 53: 117–122CrossRefGoogle Scholar
  33. 33.
    Martel P, Makriyannis A, Mavromoustakos T, Kelly K, Jeffrey KR (1993) Topography of tetrahydrocannabinol in model membranes using neutron diffraction. Biochim Biophys Acta 1151: 51–58CrossRefPubMedGoogle Scholar
  34. 34.
    Mavromoustakos T, Theodoropoulou E, Papahatjis D, Kourouli T, Yang DP, Trumbore M, Makriyannis A (1996) Studies on the thermotropic effects of cannabinoids on phosphatidylcholine bilayers using differential scanning calorimetry and small angle X-ray diffraction. Biophys Acta 1281: 235–244CrossRefGoogle Scholar
  35. 35.
    Durdagi S, Reis H, Papadopoulos MG, Mavromoustakos T (2008) Comparative molecular dynamics simulations of the potent synthetic classical cannabinoid ligand AMG3 in solution and at binding site of the CB1 and CB2 receptors. Bioorg Med Chem 16: 7377–7387CrossRefPubMedGoogle Scholar
  36. 36.
    Yuzlenko O, Kiec-Kononowicz K (2009) Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin and beta2-adrenergic-based homology models through the docking studies. J Comput Chem 30: 14–32CrossRefPubMedGoogle Scholar
  37. 37.
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16: 897–905CrossRefPubMedGoogle Scholar
  38. 38.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus MM (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4: 187–217CrossRefGoogle Scholar
  39. 39.
    Leach AR (2001) Molecular modeling: principles and applications. Pearson Educ. Ltd., England, pp 465–467Google Scholar
  40. 40.
    Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Prog 12: 241–254CrossRefGoogle Scholar
  41. 41.
    Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36: 3219–3228CrossRefGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE Jr, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick, DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 revision A.9. Gaussian Inc., PittsburghGoogle Scholar
  43. 43.
    Schuettelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Cryst D60: 1355–1363Google Scholar
  44. 44.
    Lindhal E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7: 306–317Google Scholar
  45. 45.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690CrossRefGoogle Scholar
  46. 46.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8592CrossRefGoogle Scholar
  47. 47.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18: 1463–1472CrossRefGoogle Scholar
  48. 48.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38CrossRefPubMedGoogle Scholar
  49. 49.
    Originlab Corporation, Northampton, MA 01060, USA.
  50. 50.
    Patra M, Karttunen M, Hyvönen M, Falck E, Vattulainen P (2004) Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J Phys Chem B 108: 4485–4494CrossRefGoogle Scholar
  51. 51.
    Patra M, Karttunen M, Hyvonen M, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84: 3636–3645CrossRefPubMedGoogle Scholar
  52. 52.
    van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH, ZurichGoogle Scholar
  53. 53.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52: 7182–7190CrossRefGoogle Scholar
  54. 54.
    Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41: 475–488CrossRefPubMedGoogle Scholar
  55. 55.
    Li J, Edwars PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343: 1409–1438CrossRefPubMedGoogle Scholar
  56. 56.
    Böhm HJJ (1994) On the use of LUDI to search the fine chemicals directory for ligands of proteins of known three-dimensional structure. Comput Aided Mol Des 10: 427–440Google Scholar
  57. 57.
    SYBYL v. 6.8. (2001) Molecular modeling software package. Tripos Inc., St. LouisGoogle Scholar
  58. 58.
    Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5662CrossRefGoogle Scholar
  59. 59.
    Hehre WJ, Ditchfield R, Pople JA (1975) Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J Chem Phys 62: 2921–2923CrossRefGoogle Scholar
  60. 60.
    Soteriadou K, Tzinia AK, Panou-Pamonis E, Tsikaris V, Sakarellos-Daitsiotis M, Sakarellos C, Papapouluo Y, Matsas R (1996) Antigenicity and conformational analysis of the Zn 2+ binding sites of two Zn 2+ metalloproteases: Leishmania gp63 and mammalian endopeptidase-24.11. Biochem J 313: 455–466PubMedGoogle Scholar
  61. 61.
    Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method. J Comput Chem 10: 209–220CrossRefGoogle Scholar
  62. 62.
    Durdagi S, Hofer TS, Randolf BR, Rode BM (2005) Structural and dynamical properties of Bi 3+ in water. Chem Phys Lett 406: 20–23CrossRefGoogle Scholar
  63. 63.
    van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26: 1701–1718CrossRefGoogle Scholar
  64. 64.
    Salo OMH, Lahtela-Kakkonen M, Gynther J, Jarvinen T, Poso A (2004) Development of a 3D model for the human cannabinoid CB1 receptor. J Med Chem 47: 3048–3057CrossRefPubMedGoogle Scholar
  65. 65.
    Shim JY, Welsh WJ, Howlett AC (2003) Homology model of the CB1 cannabinoid receptor: sites critical for nonclassical cannabinoid agonist interaction. Biopolymers (Pept Sci) 71: 169–189CrossRefGoogle Scholar
  66. 66.
    Tuccinardi T, Ferrarini PL, Manera C, Ortore G, Saccomanni G, Martinelli A (2006) Cannabinoid CB2/CB1 selectivity. Receptor modeling and automated docking analysis. J Med Chem 49: 984–994CrossRefPubMedGoogle Scholar
  67. 67.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289: 739–745CrossRefPubMedGoogle Scholar
  68. 68.
    Tao Q, McAllister SD, Andreassi J, Nowell KW, Cabral GA, Hurst DP, Bachtel K, Ekman MC, Reggio PH, Abood ME (1999) Role of a conserved lysine residue in the peripheral cannabinoid receptor (CB2): evidence for subtype specificity. Mol Pharmacol 55: 605–613PubMedGoogle Scholar
  69. 69.
    Mahmoudian M (1997) The cannabinoid receptor: computer-aided molecular modeling and docking of ligand. J Mol Graph Model 15: 149–153CrossRefPubMedGoogle Scholar
  70. 70.
    Shim JY, Howlett AC (2006) WIN55212-2 Docking to the CB1 cannabinoid receptor and multiple pathways for conformational induction. J Chem Inf Model 46: 1286–1300CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Serdar Durdagi
    • 1
    • 2
  • Manthos G. Papadopoulos
    • 1
  • Panagiotis G. Zoumpoulakis
    • 1
  • Catherine Koukoulitsa
    • 1
  • Thomas Mavromoustakos
    • 1
    • 3
  1. 1.Institute of Organic and Pharmaceutical ChemistryThe National Hellenic Research FoundationAthensGreece
  2. 2.Department of Biology, Chemistry, and PharmacyFreie Universität BerlinBerlinGermany
  3. 3.Department of ChemistryUniversity of AthensAthensGreece

Personalised recommendations