Molecular Diversity

, 13:209 | Cite as

Fluorous Lewis acids and phase transfer catalysts

  • Chun Cai
  • Wen-Bin Yi
  • Wei Zhang
  • Ming-Gui Shen
  • Mei Hong
  • Li-Yan Zeng


The new phase-separation and immobilization technique known as fluorous biphase system (FBS) has become an active topic among researchers in both industry and academia. A series of fluorous biphasic reactions catalyzed by Lewis acid-type metal perfluorooctanesulfonates and metal bis(perfluorooctanesulfonyl)amides are reviewed in this paper. The recent development of fluorous phase transfer catalyst (PTC) is also discussed.


Fluorous biphasic catalysis Fluorous Lewis acids Metal perfluorooctanesulfonates Metal bis(perfluorooctanesulfonyl)amides Fluorous phase transfer catalysis Fluorous onium salts Fluorous crown ethers 


  1. 1.
    Zhu DW (1993) A novel reaction medium: perfluorocarbon fluids. Synthesis 10: 953–954. doi: 10.1055/s-1993-25975 CrossRefGoogle Scholar
  2. 2.
    Kidwai M (2006) Green chemistry trends toward sustainability. Pure Appl Chem 78: 1983–1992CrossRefGoogle Scholar
  3. 3.
    Horváth IT, Rábai J (1994) Facile catalyst separation without water: fluorous biphase hydyoformylation of olefins. Science 266: 72–75. doi: 10.1126/science.266.5182.72 PubMedCrossRefGoogle Scholar
  4. 4.
    Horváth IT, Rábai J (1995) Exxon research and engineering comp. US 5463082Google Scholar
  5. 5.
    Yamamoto H (2000) Lewis acids in organic synthesis. Wiley-VCH, New YorkCrossRefGoogle Scholar
  6. 6.
    Gladysz JA, Curran DP, Horváth IT (2004) Handbook of fluorous chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. 7.
    Yoshida A, Hao XH, Yamazaki O, Nishikido J (2006) Development of fluorous Lewis acid-catalyzed reactions. Molecules 11: 627–640. doi: 10.3390/11080627 PubMedCrossRefGoogle Scholar
  8. 8.
    Yi WB (2006) Organic synthesis in fluorous biphasic system. Ph.D. thesis, Nanjing, China, 2006Google Scholar
  9. 9.
    Starks CM, Liotta CL, Halpern M (1994) Phase transfer catalysis. Chapman & Hall, New YorkGoogle Scholar
  10. 10.
    Yadav GD (2004) Insight into green phase transfer catalysis. Top Catal 29: 145–161. doi: 10.1023/ CrossRefGoogle Scholar
  11. 11.
    Desikan SL, Doraiswamy K (1995) The diffusion-reaction problem in triphase catalysis. Ind Eng Chem Res 34: 3524–3537 (and references therein). doi: 10.1021/ie00037a041 CrossRefGoogle Scholar
  12. 12.
    Reeves RL (1966) Chemistry of carbonyl group. Wiley Intersciences, New YorkGoogle Scholar
  13. 13.
    Clerici A, Pastori N, Porta O (2005) Reactivity of methyl mandelate-Ti(IV)-enediolate: oxidative homocoupling versus Aldol and direct Mannich-type syn-diastereoselective condensation. J Org Chem 70:4174–4176 (and references therein). doi: 10.1021/jo048279f PubMedCrossRefGoogle Scholar
  14. 14.
    Irie K, Watanabe K (1980) Aldol condensations with metal(II) complex catalysts. Bull Chem Soc Jpn 53: 1366–1371. doi: 10.1246/bcsj.53.1366 CrossRefGoogle Scholar
  15. 15.
    Yi WB, Cai C (2005) Aldol condensations of aldehydes and ketones catalyzed by rare earth (III) perfluorooctane sulfonates in fluorous solvents. J Fluor Chem 126: 1553–1558. doi: 10.1016/j.jfluchem.2005.09.004 CrossRefGoogle Scholar
  16. 16.
    Olah GA (1964) Friedel-Crafts and related reaction, vol III. part I. Interscience, New YorkGoogle Scholar
  17. 17.
    Shi M, Cui SC (2002) Friedel-Crafts reaction catalyzed by perfluorinated rare earth metals. J Fluor Chem 116: 143–147. doi: 10.1016/S0022-1139(02)00126-4 CrossRefGoogle Scholar
  18. 18.
    Yi WB, Cai C (2005) Rare earth (III) perfluorooctanesulfonates catalyzed Friedel-Crafts alkylation in fluorous biphase system. J Fluor Chem 126: 831–833. doi: 10.1016/j.jfluchem.2005.03.010 CrossRefGoogle Scholar
  19. 19.
    Kobayashi S, Iwamoto S (1998) Catalytic Friedel-Crafts acylation of benzene, chlorobenzene, and fluobenzene using a novel catalyst system, hafnium triflate and trifluoromethanesulfonic acid. Tetrahedron Lett 39: 4697–4700. doi: 10.1016/S0040-4039(98)00881-8 CrossRefGoogle Scholar
  20. 20.
    Yi WB, Cai C (2005) Rare earth (III) perfluorooctane sulfonates and perfluorooctanesulfonic acid in fluorous solvents: novel and recyclable catalytic systems for Friedel-Crafts acylation of unactivated benzenes. J Fluor Chem 126: 1191–1195. doi: 10.1016/j.jfluchem.2005.05.008 CrossRefGoogle Scholar
  21. 21.
    Johnson JR (1942) Organic react, vol 1. Wiley, New York, 210 pGoogle Scholar
  22. 22.
    Yi WB, Yin YQ, Cai C (2007) Ytterbium perfluooctanesulfonate-catalyzed Knoevenagel condensation in a fluorous biphasic system. Org Prep Proced Int 39: 71–75CrossRefGoogle Scholar
  23. 23.
    Cai YQ, Peng YL, Song GH (2006) Amino-functionalized ionic liquid as an efficient and recyclable catalyst for Knoevenagel reactions in water. Catal Lett 109: 61–64 (and references therein). doi: 10.1007/s10562-006-0057-3 CrossRefGoogle Scholar
  24. 24.
    Basavaiah D, Rao AJ, Satyanarayana T (2003) Advances in the Baylis-Hillman reaction and applications. Chem Rev 103: 811–892 (and references therein). doi: 10.1021/cr010043d PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao SH, Zhang HR, Feng LH, Chen ZB (2006) Pyridinium ionic liquids-accelerated amine-catalyzed Morita–Baylis–Hillman reaction. J Mol Catal Chem 258: 251–256 (and references therein). doi: 10.1016/j.molcata.2006.05.032 CrossRefGoogle Scholar
  26. 26.
    Aggarwal VK, Mereu A, Tarver GJ, McCague R (1998) Metal- and ligand-accelerated catalysis of the Baylis-Hillman reaction. J Org Chem 63: 7183–7189. doi: 10.1021/jo980421n PubMedCrossRefGoogle Scholar
  27. 27.
    Aggarwal VK, Mereu A (1999) Superior amine catalysts for the Baylis–Hillman reaction: the use of DBU and its implications. Chem Commun 22: 2311–2312. doi: 10.1039/a907754e CrossRefGoogle Scholar
  28. 28.
    Balan D, Adolfsson H (2001) Selective formation of α-methylene-β-amino acid derivatives through the aza version of the Baylis-Millman reaction. J Org Chem 66: 6498–6501. doi: 10.1021/jo0158635 PubMedCrossRefGoogle Scholar
  29. 29.
    Yi WB, Cai C, Wang X (2007) A novel ytterbium/perfluoalkylated-pyridine catalyst for Baylis-Hillman reaction in a fluorous biphasic system. J Fluor Chem 128: 919–924. doi: 10.1016/j.jfluchem.2007.03.017 CrossRefGoogle Scholar
  30. 30.
    Rosini G (1991) In: Trost BM, Fleming I, Heathcock CH (eds) Comprehensive organic synthesis. Pergamon, New York, pp 321-40Google Scholar
  31. 31.
    Kudyba I, Raczko J, Urbaczyk-Lipkowska Z, Jurczak J (2004) Highly diastereoselective Henry reaction of nitro compounds with chiral derivatives of glyoxylic acid. Tetrahedron 60: 4807–4820 (and references cited therein). doi: 10.1016/j.tet.2004.04.005 CrossRefGoogle Scholar
  32. 32.
    Gan CS, Lai GY, Zhang ZH, Wang ZY (2006) Efficient and enantioselective nitroaldol reaction catalyzed by copper Schiff-base complexes. Tetrahedron: Asymmetry 17: 725–728 (and reference therein)CrossRefGoogle Scholar
  33. 33.
    Trost BM (1991) The atom economy–a search for synthetic efficiency. Science 254: 1471–1477. doi: 10.1126/science.1962206 PubMedCrossRefGoogle Scholar
  34. 34.
    Trost BM (1985) Sculpting horizons in organic chemistry. Science 227: 908–916. doi: 10.1126/science.3969569 PubMedCrossRefGoogle Scholar
  35. 35.
    Zhou CL, Zhou QY, Wang ZY (2003) Henry reaction in aqueous media: chemoselective addition of aldehydes. Chin Chem Lett 14: 355–358Google Scholar
  36. 36.
    Yi WB, Wang X, Cai C (2007) Nitroaldol reaction in fluorous media: an important improvement of the chemoselective addition of aldehyde. Catal Commun 8: 1995–1998. doi: 10.1016/j.catcom.2007.03.025 CrossRefGoogle Scholar
  37. 37.
    Heck RF (1985) Palladium reagents in organic synthesis. Academic Press, LondonGoogle Scholar
  38. 38.
    Nakamura Y, Takeuchi S, Zhang S, Okumura K, Ohgo Y (2002) Preparation of a fluorous chiral BINAP and application to an asymmetric Heck reaction. Tetrahedron Lett 43: 3053–3056. doi: 10.1016/S0040-4039(02)00407-0 CrossRefGoogle Scholar
  39. 39.
    Nakamura Y, Takeuchi S, Ohgo Y (2003) Enantioselective carbon–carbon bond forming reactions using fluorous chiral catalysts. J Fluor Chem 120: 121–129. doi: 10.1016/S0022-1139(02)00320-2 CrossRefGoogle Scholar
  40. 40.
    Moineau J, Pozzi G, Quici S, Sinou D (1999) Palladium-catalyzed heck reaction in perfluorinated solvents. Tetrahedron Lett 40: 7683–7686. doi: 10.1016/S0040-4039(99)01590-7 CrossRefGoogle Scholar
  41. 41.
    Grigg R, York M (2000) Bimetallic catalytic cascade ring closing metathesis—intra-molecular Heck reactions using a fluorous biphasic solvent system or a polymer-supported palladium catalyst. Tetrahedron Lett 41: 7255–7258. doi: 10.1016/S0040-4039(00)01250-8 CrossRefGoogle Scholar
  42. 42.
    Rocaboy C, Gladysz JA (2002) Highly active thermomorphic fluorous palladacycle catalyst precursors for the Heck reaction; evidence for a palladium nanoparticle pathway. Org Lett 4: 1993–1996. doi: 10.1021/ol025790r PubMedCrossRefGoogle Scholar
  43. 43.
    Rocaboy C, Gladysz JA (2003) Thermomorphic fluorous imine and thioether palladacycles as precursors for highly active Heck and Suzuki catalysts; evidence for palladium nanoparticle pathways. N J Chem 27: 39–49. doi: 10.1039/b208545n CrossRefGoogle Scholar
  44. 44.
    Moreno-Mañas M, Pleixats R, Villarroya S (2001) Fluorous phase soluble palladium nanoparticles as recoverable catalysts for Suzuki cross-coupling and Heck reactions. Organometallics 20: 4524–4528. doi: 10.1021/om010442z CrossRefGoogle Scholar
  45. 45.
    Moreno-Mañas M, Pleixats R, Villarroya S (2002) Palladium nanoparticles stabilised by polyfluorinated chains. J Chem Soc Chem Commun 1: 60–61Google Scholar
  46. 46.
    Fukuyama T, Arai M, Matsubara H, Ryu I (2004) Mizoroki-Heck arylation of α, β-unsaturated acids with a hybrid fluorous ether, F-626: facile filtrative separation of products and efficient recycling of a reaction medium containing a catalyst. J Org Chem 69: 8105–8107. doi: 10.1021/jo049028+ PubMedCrossRefGoogle Scholar
  47. 47.
    Curran DP, Fischer K, Moura-Letts G (2004) A soluble fluorous palladium complex that promotes heck reactions and can be recovered and reused. Synlett 8: 1379–1382. doi: 10.1055/s-2004-829094 CrossRefGoogle Scholar
  48. 48.
    Yi WB, Cai C, Wang X (2007) A novel fluorous Palladium catalyst for Heck reaction in a fluorous biphase system (FBS). J Mol Catal A Chem 274: 68–71. doi: 10.1016/j.molcata.2007.03.052 CrossRefGoogle Scholar
  49. 49.
    Herz W, Falk H, Kirby GW, Moore RE (2001) Progress in the chemistry of organic natural products. Springer, New YorkGoogle Scholar
  50. 50.
    Miyara N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of silanolates: a paradigm shift in silicon-based cross-coupling reactions. Chem Rev 95: 2457–2483 (and reference cited therein)CrossRefGoogle Scholar
  51. 51.
    Phan NTS, VanDer Sluys M, Jones CW (2006) Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium. Adv Synth Catal 348: 609–679. doi: 10.1002/adsc.200505473 CrossRefGoogle Scholar
  52. 52.
    Schneider S, Bannwarth W (2001) A general route to pyridine-modified salicylaldehydes via Suzuki coupling. Helv Chim Acta 84:735–742. doi:10.1002/1522-2675(20010321)84:3<735::AID-HLCA735>3.0.CO;2-LGoogle Scholar
  53. 53.
    Rocaboy C, Gladysz JA (2002) Syntheses, oxidations, and palladium complexes of fluorous dialkyl sulfides: new precursors to highly active catalysts for the Suzuki coupling. Tetrahedron 58: 4007–4014. doi: 10.1016/S0040-4020(02)00275-2 CrossRefGoogle Scholar
  54. 54.
    Shen MG, Cai C, Yi WB (2007) A novel fluorous palladium catalyst for Suzuki reaction in fluorous media. J Fluor Chem 127: 1421–1424. doi: 10.1016/j.jfluchem.2007.07.008 CrossRefGoogle Scholar
  55. 55.
    Sonogashira K, Tohda Y, Hagihara NA (1975) Convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromalkenes, iodoarenes, and bromophyridines. Tetrahedron Lett 16: 4467–4470. doi: 10.1016/S0040-4039(00)91094-3 CrossRefGoogle Scholar
  56. 56.
    Chinchilla R, Nájera C (2007) The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem Rev 107: 874–922 (and reference cited therein)PubMedCrossRefGoogle Scholar
  57. 57.
    Negishi E, Anastasia L (2003) Palladium-catalyzed alkynylation. Chem Rev 103: 1979–2017. doi: 10.1021/cr020377i PubMedCrossRefGoogle Scholar
  58. 58.
    Li JJ, Gribble GW (2000) Palladium in heterocyclic chemistry. In: Tetrahedron organic chemistry series, vol 20. Pergamon, AmsterdamGoogle Scholar
  59. 59.
    Nicolaou KC, Dai WM (1991) Chemistry and biology of enediyneantieancer antibiotics. Angew Chem Int Ed Engl 30: 1387–1416. doi: 10.1002/anie.199113873 CrossRefGoogle Scholar
  60. 60.
    Grissom JM, Gunawardena GU, Klingberg D, Huang D (1996) The chemistry of enediynes, enyne allenes and related compounds. Tetrahedron 52: 6453–6518. doi: 10.1016/0040-4020(96)00016-6 CrossRefGoogle Scholar
  61. 61.
    De Kort M, Correa V, Valentijin ARPM, Van der Marel GA, Potter BVL, Taylor CW, Van Boom JH (2000) Synthesis of potent agonists of the D-myo-inositol 1,4,5-trisphosphate receptor based on clustered disaceharide polyphosphate analogues of adenophostin. J Med Chem 43: 3295–3303. doi: 10.1021/jm000957c PubMedCrossRefGoogle Scholar
  62. 62.
    Francke V, Mangel T, Muellen K (1998) Synthesis of α,ω-difunctionalized oligo- and poly(p-phenyleneethynylene)s. Macromolecules 31: 2447–2453. doi: 10.1021/ma971429m CrossRefGoogle Scholar
  63. 63.
    Sonogashira K (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 3. Pergamon, New York, 521 ppGoogle Scholar
  64. 64.
    Fukuyama T, Shinmen M, Nishitani S, Sato M, Ryu I (2002) A copper-free Sonogashira coupling reaction in ionic liquids and its application to a microflow system for efficient catalyst recycling. Org Lett 4: 1691–1694. doi: 10.1021/ol0257732 PubMedCrossRefGoogle Scholar
  65. 65.
    Genet JP, Blart E, Savignac M (1992) Palladium-catalyzed cross-coupling reactions in a homogeneous aqueous medium. Synlett 9: 715–717. doi: 10.1055/s-1992-21465 CrossRefGoogle Scholar
  66. 66.
    Jiang JZ, Cai C (2006) Pd/C catalyzed Sonogashira coupling reaction of phenylacetylene in TX10 microemulsion. Colloids Surf A Physicochem Eng Asp 287: 212–216. doi: 10.1016/j.colsurfa.2006.03.037 CrossRefGoogle Scholar
  67. 67.
    Reddy KR, Kumar NS, Reddy PS, Sreedhar B, Kantam ML (2006) Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions. J Mol Catal A: Chem 252: 12–16 (and reference cited therein)CrossRefGoogle Scholar
  68. 68.
    Corma A, Garciá H, Primo A (2006) Palladium and copper supported on mixed oxides derived from hydrotalcite as reusable solid catalysts for the sonogashira coupling. J Catal 241: 123–131. doi: 10.1016/j.jcat.2006.04.021 CrossRefGoogle Scholar
  69. 69.
    Chow HF, Wan CW, Low KH, Yeung YY (2001) A highly selective synthesis of diarylethynes and their oligomers by a palladium-catalyzed Sonogashira coupling reaction under phase transfer conditions. J Org Chem 66: 1910–1913. doi: 10.1021/jo001538q PubMedCrossRefGoogle Scholar
  70. 70.
    Djakovitch L, Rollet P (2004) Sonogashira cross-coupling reactions catalysed by copper-free palladium zeolites. Adv Synth Catal 346: 1782–1792 (and reference cited therein)CrossRefGoogle Scholar
  71. 71.
    Yi C, Hua R (2006) A copper-free efficient palladium(II)-catalyzed coupling of aryl bromides with terminal alkynes. Catal Commun 7: 377–379 (and reference cited therein)CrossRefGoogle Scholar
  72. 72.
    Cwik A, Hell Z, Figueras F (2006) A copper-free Sonogashira reaction using a Pd/MgLa mixed oxide. Tetrahedron Lett 47: 3023–3026 (and reference cited therein)CrossRefGoogle Scholar
  73. 73.
    Powell NA, Rychnosky SD (1996) Iodide acceleration in the Pd-catalyzed coupling of aromatic 1,2-ditriflates with alkynes: synthesis of enediynes. Tetrahedron Lett 37: 7901–7904. doi: 10.1016/0040-4039(96)01698-X CrossRefGoogle Scholar
  74. 74.
    Crisp GT, Turner PD, Stephens KA (1998) Palladium-catalysed coupling of terminal alkynes with aryl halides aided by catalytic zinc. J Organomet Chem 570: 219–224. doi: 10.1016/S0022-328X(98)00765-7 CrossRefGoogle Scholar
  75. 75.
    Nakamura K, Ohubo H, Yamaguchi M (1999) Low temperature Sonogashira coupling reaction. Synlett 5: 549–550. doi: 10.1055/s-1999-2684 CrossRefGoogle Scholar
  76. 76.
    Kabalka GW, Wang L, Namboodiri V, Pagni RM (2000) Rapid microwave-enhanced, solventless Sonogashira coupling reaction on alumina. Tetrahedron Lett 41: 5151–5154. doi: 10.1016/S0040-4039(00)00774-7 CrossRefGoogle Scholar
  77. 77.
    Garcia-Bernabé A, Tzschucke CC, Bannwarth W, Haag R (2005) Supramolecular immobilization of a perfluoro-tagged Pd-catalyst with dendritic architectures and application in Suzuki reactions. Adv Synth Catal 347: 1389–1394 (and reference cited therein)CrossRefGoogle Scholar
  78. 78.
    Yi WB, Cai C, Wang X (2007) A novel palladium/perfluoroalkylated-pyridine catalyst for Sonogashira reaction of aryl bromides and chlorides in a fluorous biphasic system (FBS). Eur J Org Chem 11: 3445–3448. doi: 10.1002/ejoc.200700287 CrossRefGoogle Scholar
  79. 79.
    Hanamoto T, Sugimoto Y, Jin YZ, Inanaga J (1997) Scandium(III) perfluorooctanesulfonate[Sc(OPf)3]: a novel catalyst for the hetero Diels-Alder reaction of aldehydes with non-activated dienes. Bull Chem Soc Jpn 70: 1421–1426. doi: 10.1246/bcsj.70.1421 CrossRefGoogle Scholar
  80. 80.
    Kagan HB, Riant O (1992) Catalytic asymmetric Diels-Alder reactions. Chem Rev 92: 1007–1019. doi: 10.1021/cr00013a013 CrossRefGoogle Scholar
  81. 81.
    Schmidt RR (1986) Hetero-Diels-Alder reaction in highly functionalized natural product synthesis. Acc Chem Res 19: 250–259. doi: 10.1021/ar00128a004 CrossRefGoogle Scholar
  82. 82.
    Liu Y, Lotero E, Goodwin JG Jr (2006) Effect of water on sulfuric acid catalyzed esterification. J Mol Catal Chem 245: 132–140. doi: 10.1016/j.molcata.2005.09.049 CrossRefGoogle Scholar
  83. 83.
    Altiokka MR, Citak A (2003) Kinetics study of esterification of acetic acid with isobutanol in the presence of amberlite catalyst. Appl Catal Gen 239: 141–148. doi: 10.1016/S0926-860X(02)00381-2 CrossRefGoogle Scholar
  84. 84.
    Yadav GD, Mehta PH (1994) Heterogeneous catalysis in esterification reactions: preparation of phenethyl acetate and cyclohexyl acetate. Ind Eng Chem Res 33: 2198–2208. doi: 10.1021/ie00033a025 CrossRefGoogle Scholar
  85. 85.
    Yi WB, Cai C (2005) Esterification of fluorous biphasic system catalyzed by rare earth(III) perfluorooctanesulfonate. Chin J Org Chem 25: 1434–1436 (in Chinese)Google Scholar
  86. 86.
    Greene TW, Wats PGM (1999) Protective groups in organic synthesis. Wiley, New YorkCrossRefGoogle Scholar
  87. 87.
    Yi WB, Yin YQ, Cai C (2006) Ytterbium perfluorooctanesulfonate catalyzed synthesis of acylals from aldehydes and acetic anhydride in a fluorous biphasic system. Can J Chem 84: 1563–1566. doi: 10.1139/V06-162 CrossRefGoogle Scholar
  88. 88.
    Reeves RL (1966) Chemistry of carbonyl group. Wiley Intersciences, New YorkGoogle Scholar
  89. 89.
    Yi WB, Cai C (2006) Synthesis of acetals catalyzed by rare earth (III) perfluorooctane sulfonates in fluorous solvent. Chin J Appl Chem 23: 1295–1297 (in Chinese)Google Scholar
  90. 90.
    Arend M, Westermann B, Risch N (1998) Modern variants of the Mannich reaction. Angew Chem Int Ed 37:1044–1070 (and references cited therein). doi:10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-EGoogle Scholar
  91. 91.
    Ishitani H, Ueno M, Kobayashi S (1997) Aldehydes vs aldimines. Unprecedented aldimine-selective nucleophilic additions in the coexistence of aldehydes using a lanthanide salt as a Lewis acid catalyst. J Am Chem Soc 119: 10049–10053 (and references cited therein). doi: 10.1021/ja970498d CrossRefGoogle Scholar
  92. 92.
    Manabe K, Kobayashi S (1999) Mannich-type reactions of aldehydes, amines, and ketones in a colloidal disoersion system created by a Brølnsted acid-surfactant-combined catalyst in water. Org Lett 1: 1965–1967. doi: 10.1021/ol991113u CrossRefGoogle Scholar
  93. 93.
    Limura S, Nobutou D, Manabe K, Kobayashi S (2003) Mannich-type reactions in water using a hydrophobic polymer-supported sulfonic acid catalyst. Chem Commun 14: 1644–1645Google Scholar
  94. 94.
    Wang LM, Han JW, Sheng J, Fan ZY, Tian H (2005) Aromatic aldehydes and aromatic amines: three component one-pot synthesis of β-amino ketone derivatives. Chin J Org Chem 25: 591–594 (in Chinese)Google Scholar
  95. 95.
    Yi WB, Cai C (2006) Mannich-type reactions of aromatic aldehydes, anilines, and methyl ketones in fluorous biphase systems created by rare earth (III) perfluorooctane sulfonates catalysts in fluorous media. J Fluor Chem 127: 1515–1521. doi: 10.1016/j.jfluchem.2006.07.009 CrossRefGoogle Scholar
  96. 96.
    Landquist JK (1984) In: Katritzky AR, Rees CW (eds) Comprehensive heterocyclic chemistry, vol 1. Pergamon, Oxford, pp 166-70Google Scholar
  97. 97.
    Ricaurte R, Braulio I, Rodrigo A, Jairo O (2004) Preparation of some light-sensitive 2-nitrophenyl-2, 3-dihydro-1H-benzodiazepines. Arkivoc 13: 67–71Google Scholar
  98. 98.
    Farges RC, Torres SR, Pascual F, Ribeiro-do-Valle RM (2004) Involvement of steroids in anti-inflammatory effects of peripheral benzodiazepine receptor ligands. Life Sci 74: 1387–1395. doi: 10.1016/j.lfs.2003.08.013 PubMedCrossRefGoogle Scholar
  99. 99.
    Kosychova L, Stumbreviciute Z, Pleckaitiene L, Janciene R, Puodziunaite BD (2004) Synthesis of substituted 5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1,5]benzodiazepines. Chem Heterocycl Compd 40: 811–815. doi: 10.1023/B:COHC.0000040781.41929.9c CrossRefGoogle Scholar
  100. 100.
    Chimirri A, Grasso S, Ottana R, Romeo G, Zappala MJ (1990) Synthesis of substituted 5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1,5]benzodiazepines. Heterocycl Chem 27: 371–375CrossRefGoogle Scholar
  101. 101.
    Stahlofen P, Ried W (1957) Heterocyclic seven-membered ring systems (V) reaction of o-phenylenediamine with a,b-unsaturated carbonyl compounds. Chem Ber 90: 815–824. doi: 10.1002/cber.19570900528 CrossRefGoogle Scholar
  102. 102.
    Ried W, Torinus E (1959) Heterocyclic seven-ring systems: synthesis of condensed 5-,7- and 8-membered heterocycles with 2 nitrogen atoms. Chem Ber 92: 2902–2916. doi: 10.1002/cber.19590921138 CrossRefGoogle Scholar
  103. 103.
    Gheorghe R, Comanita E, Bogdan C (2002) Synthesis and reactivity of Mannich bases. XIV. Base-catalyzed cyclocondensation of β-aminoketones to 1,5-benzodiazepines and 1,4-naphthodiazepines. Acta Chim Slov 49: 575–585Google Scholar
  104. 104.
    Wu JT, Xu F, Zhou ZQ, Shen Q (2006) Efficient synthesis of 1,5-benzodiazepine derivatives by ytterbium trichloride-catalyzed condensation of o-phenylenediamine and ketones. Synth Commun 36: 457–464. doi: 10.1080/00397910500383527 CrossRefGoogle Scholar
  105. 105.
    Curini M, Epifano F, Marcotullio MC, Rosati O (2001) Ytterbium triflate promoted synthesis of 1,5-benzodiazepine derivatives. Tetrahedron Lett 42: 3193–3195. doi: 10.1016/S0040-4039(01)00413-0 CrossRefGoogle Scholar
  106. 106.
    Yi WB, Cai C (2007) Ytterbium perfluorooctanesulfonates catalyzed the synthesis of 1,5-benzodiazepine derivatives in fluorous solvents. Synth Commun 37: 3827–3833. doi: 10.1080/00397910701572464 CrossRefGoogle Scholar
  107. 107.
    Lombardino JG, Wiseman EH (1974) Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles. J Med Chem 17: 1182–1188. doi: 10.1021/jm00257a011 PubMedCrossRefGoogle Scholar
  108. 108.
    Wang LM, Wang YH, He T, Yao YF, Shao JH, Liu B (2006) Ytterbium triflate as an efficient catalyst for one-pot synthesis of substituted imidazoles through three-component condensation of benzil, aldehydes and ammonium acetate. J Fluor Chem 127: 1570–1537. doi: 10.1016/j.jfluchem.2006.08.005 CrossRefGoogle Scholar
  109. 109.
    Shen MG, Cai C, Yi WB (2008) Ytterbium perfluorooctanesulfonate as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. J Fluor Chem 129: 541–544. doi: 10.1016/j.jfluchem.2008.03.009 CrossRefGoogle Scholar
  110. 110.
    Roth T, Morningstar ML, Boyer PL, Hughes SHJ, Buckheit RW, Michejda CJ (1997) Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles. J Med Chem 40: 4199–4207. doi: 10.1021/jm970096g PubMedCrossRefGoogle Scholar
  111. 111.
    Middleton RW, Wibberley DG (1980) Synthesis of imidazo[4,5 b]- and [4,5 c]pyridines. J Heterocycl Chem 17: 1757–1760CrossRefGoogle Scholar
  112. 112.
    Fairley TA, Tidwell RR, Donkor I, Naiman NA, Ohemeng KA, Lombardy RJ, Bentley JA, Cory M (1993) DNA minor groove binding, and base pair specificity of alkyl-and aryl-linked bis(amidinobenzimidazole) and bis(amidinoindoles). J Med Chem 36: 1746–1753. doi: 10.1021/jm00064a008 PubMedCrossRefGoogle Scholar
  113. 113.
    Bourgrin K, Loupy A, Soufiaoui M (1998) Three new routes for synthesis 1,3-azolederivatives using microwave. Tetrahedron 54: 8055–8064. doi: 10.1016/S0040-4020(98)00431-1 CrossRefGoogle Scholar
  114. 114.
    Shen MG, Cai C (2007) Ytterbium perfluorooctanesulfonates catalyzed synthesis of benzimidazole derivatives in fluorous solvents. J Fluor Chem 128: 232–235. doi: 10.1016/j.jfluchem.2007.01.009 CrossRefGoogle Scholar
  115. 115.
    Ingold CK (1969) Structure and mechanism in organic chemistry, 2nd ed. Cornell University Press, IthacaGoogle Scholar
  116. 116.
    Olah GA, Malhotra R, Narang SC (1989) Nitration: methods and mechanism. VCH Publishers, New YorkGoogle Scholar
  117. 117.
    Schofield K (1980) Aromatic nitration. Cambridge University Press, LondonGoogle Scholar
  118. 118.
    Malysheva LV, Paukshtis EA, Ione KG (1995) Nitration of aromatics by nitrogen oxides on zeolite catalysts: comparison of reaction in the gas phase and solutions. Catal Rev Sci Eng 37: 179–226Google Scholar
  119. 119.
    Waller FJ, Barrett AGM, Braddock DC, McKinnell RM, White AJP, Williams DJ, Ducray R (1999) Tris(trifluoromethanesulfonyl)methide (“triflide” anion: convenient preparation, X-ray crystal structures, and exceptional catalytic activity as a counterion with Ytterbium(III) and Scandium(III). J Org Chem 64: 2910–2913 (and references cited therein). doi: 10.1021/jo9800917 PubMedCrossRefGoogle Scholar
  120. 120.
    Shi M, Cui SC (2002) Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase. Chem Commun 9: 994–995. doi: 10.1039/b202308n CrossRefGoogle Scholar
  121. 121.
    Crampton MR, Cropper EL, Gibbons LM, Millar RW (2002) The nitration of arenes in perfluorocarbon solvents. Green Chem 4: 275–278. doi: 10.1039/b200627h CrossRefGoogle Scholar
  122. 122.
    Yi WB, Cai C (2006) Highly efficient dinitration of aromatic compounds in fluorous media using Ytterbium perfluorooctanesulfonate and perfluorooctanesulfonic acid as catalysts. Synth Commun 36: 2957–2961. doi: 10.1080/00397910600773700 CrossRefGoogle Scholar
  123. 123.
    Coon CL, Blucher WG, Hill ME (1973) Aromatic nitration with nitric acid and trifluoromethanesulfonic acid. J Org Chem 38: 4243–4248. doi: 10.1021/jo00964a007 CrossRefGoogle Scholar
  124. 124.
    Kobayashi S, Sugiura M, Kitagawa MH, Lam WL (2002) Rare-earth metal triflates in organic synthesis. Chem Rev 102: 2227–2302 (and references cited therein). doi: 10.1021/cr010289i PubMedCrossRefGoogle Scholar
  125. 125.
    Hill AJ, Millar RW, Sandall JPB (2004) Atom-efficient eletrophilic aromatic nitration by dinitrogen pentoxide catalysed by zirconium(IV) 2,4-pentanedionate. Org Biomol Chem 1: 90–92 (and references cited therein). doi: 10.1039/b311068k CrossRefGoogle Scholar
  126. 126.
    Peng XH, Suzuki H (2001) Regioselective double Kyodai nitration of toluene and chlorobenzene over zeolites High preference for the 2,4-dinitro isomer at the second nitration stage. Org Lett 3: 3431–3434 (and references cited therein). doi: 10.1021/ol016283x PubMedCrossRefGoogle Scholar
  127. 127.
    Yi WB, Cai C (2007) A novel and highly efficient catalytic system for trinitration of aromtatic compounds: Ytterbium perfluorooctanesulfonate and perfluorooctanesulfonic acid in fluorous solvents. J Energ Mater 25: 129–139. doi: 10.1080/07370650701205790 CrossRefGoogle Scholar
  128. 128.
    Olah GA, Lin HCH (1971) Electrophilic reactions at single bonds, V. Nitration and nitrolysis of alkanes and cycloalkanes with nitronium salts. J Am Chem Soc 93: 1259–1261. doi: 10.1021/ja00734a039 CrossRefGoogle Scholar
  129. 129.
    Bachmann WE, Horton WJ, Jenner EL, MacNaughton NW, Scott LB (1951) Cyclic and linear nitramines formed by nitrolysis of hexamine. J Am Chem Soc 73: 2769–2773. doi: 10.1021/ja01150a099 CrossRefGoogle Scholar
  130. 130.
    Robson JH, Reinhart J (1955) The synthesis of secondary nitramines by the nitrolysis of N,N-disubstituted amides. J Am Chem Soc 77: 2453–2457. doi: 10.1021/ja01614a028 CrossRefGoogle Scholar
  131. 131.
    Perkins LW, Klasson KT, Counce RM, Bienkowski PR (2003) Development of nitrolysis for excess sludge treatment II: a factorial study for industrial wastes. Ind Eng Chem Res 42: 5457–5461. doi: 10.1021/ie0304311 CrossRefGoogle Scholar
  132. 132.
    Perkins LW, Klasson KT, Counce RM, Bienkowski PR (2003) Development of nitrolysis for excess sludge treatment: a factorial study. Ind Eng Chem Res 42: 3544–3548. doi: 10.1021/ie030125n CrossRefGoogle Scholar
  133. 133.
    Olah G, Squire ADR (1991) Chemistry of energetic materials. Academic Press Inc., San DiegoGoogle Scholar
  134. 134.
    Millar RW, Colclough ME, Desai H (1996) Novel syntheses of energetic materials. British Crown, UKGoogle Scholar
  135. 135.
    Hale GC (1925) Nitration of urotropine using nitric acid. J Am Chem Soc 47: 2754–2757. doi: 10.1021/ja01688a017 CrossRefGoogle Scholar
  136. 136.
    Dunning WJ, Millard B, Nutt CW (1952) The heat of nitrolysis of hexamine in nitric acid. J Chem Soc 9: 1264–1269. doi: 10.1039/jr9520001264 CrossRefGoogle Scholar
  137. 137.
    Bachmann BWE, Sheehan JC (1949) A new method of preparing the high explosive RDX. J Am Chem Soc 71: 1842–1845. doi: 10.1021/ja01173a092 CrossRefGoogle Scholar
  138. 138.
    Yi WB, Cai C (2008) Synthesis of RDX by nitrolysis of hexamethylenetetramine in fluorous media. J Hazard Mater 150: 839–842. doi: 10.1016/j.jhazmat.2007.10.040 PubMedCrossRefGoogle Scholar
  139. 139.
    Succasunna WL, Saddlebrook SN, Alster J, Lawn F (1992) Improved process of producing HMX in 100% yield and purity. US 5124493.Google Scholar
  140. 140.
    Siele VI (1976) Process for producing 1,3,5,7-tetraalkanoyl-1,3,5,7-octahydrotetrazocines. US 3979379Google Scholar
  141. 141.
    McGuire RR, Coon CL, Richard K (1984) Method for synthesizing HMX. US 4432902.Google Scholar
  142. 142.
    Y YF, Huang CJ (1989) Study on preparation of HMX by DANNO method. Chin J Explos Pyrot 12: 1–4 (in Chinese)Google Scholar
  143. 143.
    Ren TS, Yan H (1991) Studies on HMX synthesis from paraformaldehyde and ammonium nitrate. Proc Int Pyrotech Semin 1: 220Google Scholar
  144. 144.
    Coon CJ (1976) Preparation of octahydro-1,3,5,7-tetraalkanoyl-1,3,5,7-tetrazocines. US 3978046Google Scholar
  145. 145.
    Larock RC (1989) Comprehensive organic transformations. VCH Publishers Inc., New YorkGoogle Scholar
  146. 146.
    Buffin BP, Clarkson JP, Belitz NL, Kundu A (2005) Pd(II)-biquinoline catalyzed aerobic oxidation of alcohols in water. J Mol Catal Chem 225: 111–116 (and references cited therein). doi: 10.1016/j.molcata.2004.08.035 CrossRefGoogle Scholar
  147. 147.
    Yi WB, Cai C (2007) New method for preparation of benzaldehyde from benzyl alcohol in fluorous biphasic system. CN 1927798 (in Chinese)Google Scholar
  148. 148.
    Betzemeier B, Cavazzini M, Quici S, Knochel P (2000) Copper-catalyzed aerobic oxidation of alcohols under fluorous biphasic conditions. Tetrahedron Lett 41: 4343–4346. doi: 10.1016/S0040-4039(00)00620-1 CrossRefGoogle Scholar
  149. 149.
    Nishimura T, Maeda Y, Kakiuchi N, Uemura S (2000) Palladium(II)-catalysed oxidation of alcohols under an oxygen atmosphere in a fluorous biphase system (FBS). J Chem Soc Perkin Trans I 24: 4301–4305. doi: 10.1039/b006874h CrossRefGoogle Scholar
  150. 150.
    Contel M, Izuel C, Laguna M, Villuendas PR, Alonso PJ, Fish RH (2003) Fluorous biphasic catalysis: synthesis and characterization of copper(I) and copper(II) fluoroponytailed 1,4,7-Rf-TACN and 2,2’ Rf-bipyridine complexes — their catalytic activity in the oxidation of hydrocarbons, olefins, and alcohols, including mechanistic implications. Chem Eur J 9: 4168–4178. doi: 10.1002/chem.200304771 CrossRefGoogle Scholar
  151. 151.
    Vincent JM, Lastécouères D, Contel M, Laguna M, Fish RH (2004) In: Gladysz JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry, chaps 10,12. Willey, New York, pp 298-05Google Scholar
  152. 152.
    Vincent JM, Contel M, Laguna M, Fish RH (2004) In: Gladysz JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry, chaps 11,15. Willey, New York, pp 395-97Google Scholar
  153. 153.
    Fish RH, Rabion A, Neimann K, Neumann R, Vincent JM, Contel M, Izuel C, Villuendas PR, Alonso PJ (2005) Precatalyst separation paradigms: alkane functionalization in water utilizing in situformed [Fe2O(η1-H2O)(η1-OAc)(TPA)2]3+, embedded in surface-derivatized silica, as an MMO model and fluorous biphasics catalysis for alkane, alkene and alcohol oxidation chemistry. Top Catal 32: 185–196. doi: 10.1007/s11244-005-2890-9 CrossRefGoogle Scholar
  154. 154.
    Contel M, Villuendas PR, Fernandez-Gauardo J, Alonso PJ, Vincent JM, Fish RH (2005) Fluorocarbon soluble copper(II) carboxylate complexes with nonfluoroponytailed nitrogen ligands as precatalysts for the oxidation of alkenols and alcohols under fluorous biphasic or thermomorphic modes: structural and mechanistic aspects. Inorg Chem 44: 9771–9778. doi: 10.1021/ic051220m PubMedCrossRefGoogle Scholar
  155. 155.
    Yi WB, Cai C (2006) Cobalt(II) perfluorooctane sulfonate catalyzed highly efficient aerobic oxidation of alcohols in fluorous biphasic systems. Aust J Chem 59: 349–353. doi: 10.1071/CH05250 CrossRefGoogle Scholar
  156. 156.
    Miersch O, Kramell R, Parthier B, Wasternack C (1999) Structure-activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barley leaves. Phytochemistry 50: 353–361. doi: 10.1016/S0031-9422(98)00597-4 CrossRefGoogle Scholar
  157. 157.
    Hoover JRE, Dunn GL, Jakas DR, Lam LL, Taggart JJ, Guarini JR, Phillips L (1974) Semisynthetic cephalosporins. Synthesis and structure-activity relationships of 7-mandelamido-3-cephem-4-carboxylic acids. J Med Chem 17: 34–41. doi: 10.1021/jm00247a008 PubMedCrossRefGoogle Scholar
  158. 157.
    Yoshioka M, Yoshida A, Ichihashi Y, Saito H (1985) Homovanillic acid, vanillylmandelic acid and 5-hydroxyindole-3-acetic acid are undetectable in urine of the muskrat. Chem Pharm Bull 33: 2145–2148PubMedGoogle Scholar
  159. 159.
    El Nimr AE, Salama HA, Khalil RM, Kassem MA (1983) Effects of urea on the activity of certain ophthalmic drugs in man. Pharmazie 38: 728–730PubMedGoogle Scholar
  160. 160.
    Corson BB (1941). In: Orgnanic synthesis, vol I. Wiley, New York, 336 ppGoogle Scholar
  161. 161.
    Merz A (1974) Phase transfer-catalyzed reactions IV. Simple mandelic acid synthesis. Synthesis 10: 724–725. doi: 10.1055/s-1974-23421 Google Scholar
  162. 162.
    Aston JG (1955). In: Orgnanic synthesis, vol III. Wiley, New York, 538 ppGoogle Scholar
  163. 163.
    Massimo C, Francesco E, Salvatore G, Carla Marcotullio M, Ornelio R (2005) Ytterbium triflate-promoted tandem one-pot oxidation-Cannizzaro reaction of aryl methyl ketones. Org Lett 7: 1331–1333. doi: 10.1021/ol050125e CrossRefGoogle Scholar
  164. 164.
    Shen MG, Cai C (2007) Rare earth (III) perfluorooctanesulfonates catalyzed synthesis of α-hydroxy-arylacetic acids from aryl methyl ketones in fluorous media. Catal Commun 8: 871–875. doi: 10.1016/j.catcom.2006.08.045 CrossRefGoogle Scholar
  165. 165.
    Koppel IA, Taft RW, Anvia F, Zhu SZ, Hu LQ, Sung KS, DesMarteau DD, Yagupolskii LM, Yagupolskii YL, Ignat’ev NV, Kondratenko NV, Volkonskii AY, Vlasov VM, Notario R, Maria PC (1994) The gas-phaseacidities of very strong neutral brønsted acids. J Am Chem Soc 116: 3047–3057. doi: 10.1021/ja00086a038 CrossRefGoogle Scholar
  166. 166.
    Hao XH, Yoshida A, Nishikido J (2006) Metal bis(perfluorooctanesulfonyl)amides as highly efficient Lewis acid catalysts for fluorous biphase organic reactions. J Fluor Chem 127: 193–199. doi: 10.1016/j.jfluchem.2005.10.017 CrossRefGoogle Scholar
  167. 167.
    Nishikido J, Yoshida A (2005) Development of multiphase reaction processes using fluorous Lewis acid catalysts. J Synth Org Chem, Jpn 63: 144–153Google Scholar
  168. 168.
    Mikami K, Mikami Y, Matsuzawa H, Nishikido J, Yamamoto F, Nakajima H (2002) Lanthanide catalysts with tris(perfluorooctane-sulfonyl)methide and bis(perfluorooctanesulfonyl) amide ponytails: recyclable Lewis acid catalysts in fluorous phases or as solids. Tetrahedron 58: 4015–4021. doi: 10.1016/S0040-4020(02)00313-7 CrossRefGoogle Scholar
  169. 169.
    Hao XH, Yoshida A, Nishikido J (2005) Hf[N(SO2C8F17)2]4-Catalyzed Friedel–Crafts acylation in a fluorous biphase system. Tetrahedron Lett 46: 2697–2700. doi: 10.1016/j.tetlet.2005.02.065 CrossRefGoogle Scholar
  170. 170.
    Arundale E, Mikeska LA (1952) The olefin-aldehyde condensation. The Prins reaction. Chem Rev 51: 505–556. doi: 10.1021/cr60160a004 Google Scholar
  171. 171.
    Zhang WC, Viswanathan GS, Li CJ (1999) Scandium triflate catalyzed in situ Prins-type cyclization: formations of 4-tetrahydropyranols and ethers. Chem Commun 291–292. doi: 10.1039/a808960d
  172. 172.
    Zhang WC, Li CJ (2000) Diastereoselective synthesis of 2, 4-disubstituted tetrahydropyranols and ethers via Prins-type cyclization catalyzed by scandium triflate. Tetrahedron 56: 2403–2411. doi: 10.1016/S0040-4020(00)00152-6 CrossRefGoogle Scholar
  173. 173.
    Hao XH, Yoshida A, Hoshi N (2007) Recyclable hafnium(IV) bis(perfluorooctanesulfonyl)amide complex for catalytic Friedel–Crafts acylation and Prins reaction in fluorous biphase system. J Fluor Chem 128: 1396–1401. doi: 10.1016/j.jfluchem.2007.07.007 CrossRefGoogle Scholar
  174. 174.
    Yao XQ, Li CJ (2004) Highly efficient addition of activated methylene compounds to alkenes catalyzed by gold and silver. J Am Chem Soc 126: 6884–6885 (and reference cited therein)PubMedCrossRefGoogle Scholar
  175. 175.
    Reping M, Nachtsheim BJ, Ieawsuwan W (2006) An effective bismuth-catalyzed benzylation of arenes and heteroarenes. Adv Synth Catal 348: 1033–1037 (and reference cited therein)CrossRefGoogle Scholar
  176. 176.
    Reping M, Nachtsheim BJ, Kuenkel A (2007) Efficient metal-catalyzed direct benzylation and allylic alkylation of 2,4-pentanediones. Org Lett 9: 825–828 (and reference cited therein)CrossRefGoogle Scholar
  177. 177.
    Tsuji J (2000) Palladium reagents and catalysts, innovations in organic synthesis 2nd ed. Wiley, ChichesterGoogle Scholar
  178. 178.
    Huang W, Wang JL, Shen QS, Zhou XG (2007) An efficient Yb(OTf)3 catalyzed alkylation of 1,3-dicarbonyl compounds using alcohols as substrates. Tetrahedron Lett 48: 3969–3973. doi: 10.1016/j.tetlet.2007.04.047 CrossRefGoogle Scholar
  179. 179.
    Poupelin JP, Sanit-Ruf G, Foussard-Blanpin O, Marcisse G, Uchida-Ernouf G, Lacroix R (1978) Synthesis and antiinflammatory properties of bis(2 hydroxy 1 naphthyl) methane derivatives. Eur J Med Chem 13: 67–71Google Scholar
  180. 180.
    Ion RM, Frackowiak D, Planner A, Wiktorowicz K (1998) The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim Pol 45: 833–845PubMedGoogle Scholar
  181. 181.
    Sarma RJ, Baruah JB (2005) One step synthesis of dibenzoxanthenes. Dyes Pigm 64: 91–92. doi: 10.1016/j.dyepig.2004.03.010 CrossRefGoogle Scholar
  182. 182.
    Ahmad M, King TA, Ko DK, Cha BH, Lee J (2002) Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J Phys D Appl Phys 35: 1473–1476. doi: 10.1088/0022-3727/35/13/303 CrossRefGoogle Scholar
  183. 183.
    Liu JX, Diwu ZJ, Leung WY (2001) Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg Med Chem Lett 11: 2903–2905. doi: 10.1016/S0960-894X(01)00595-9 PubMedCrossRefGoogle Scholar
  184. 184.
    Oliva AI, Simón L, Muñiz FM, Sanzb F, Morán JR (2004) A trans-tetrahydrobenzoxanthene receptor for the resolution of racemic mixtures of sulfonylamino acids. Chem Commun 4: 426–427. doi: 10.1039/b312560b CrossRefGoogle Scholar
  185. 185.
    Wang LM, Sui YY, Zhang L (2008) Synthesis of 14-{[(un)substituted phenyl] or alkyl}-14H-dibenzo[a,j]xanthenes using Yb(OTf)3 as an efficient catalyst under solvent-free conditions. Chin J Chem 26: 1105–1108. doi: 10.1002/cjoc.200890196 CrossRefGoogle Scholar
  186. 186.
    Hao XH, Yoshida A, Nishikido J (2004) Recyclable and selective Lewis acid catalysts for transesterification and direct esterification in a fluorous biphase system: tin(IV) and hafnium(IV) bis(perfluorooctanesulfonyl)amide complexes. Tetrahedron Lett 45: 781–785. doi: 10.1016/j.tetlet.2003.11.035 CrossRefGoogle Scholar
  187. 187.
    Ishihara K, Nakayama M, Ohara S, Yamamoto H (2002) Direct ester condensation from a 1:1 mixture of carboxylic acids and alcohols catalyzed by hafnium(IV) or zirconium(IV) salts. Tetrahedron 58: 8179–8188. doi: 10.1016/S0040-4020(02)00966-3 CrossRefGoogle Scholar
  188. 188.
    Otera J (1993) Transesterification. Chem Rev 93: 1449–1470. doi: 10.1021/cr00020a004 CrossRefGoogle Scholar
  189. 189.
    Renz M, Meunier B (1999) 100 Years of Baeyer-Villiger Oxidations. Eur J Org Chem 4:737–750. doi:10.1002/(SICI)1099-0690(199904)1999:4<737::AID-EJOC737>3.0.CO;2-BGoogle Scholar
  190. 190.
    Hao XH, Yamazaki O, Yoshida A, Nishikido J (2003) Tin(IV) bis(perfluoroalkanesulfonyl)amide complex as a highly selective Lewis acid catalyst for Baeyer–Villiger oxidation using hydrogen peroxide in a fluorous recyclable phase. Tetrahedron Lett 44: 4977–4980. doi: 10.1016/S0040-4039(03)01185-7 CrossRefGoogle Scholar
  191. 191.
    Pozzi G, Quici S, Fish RH (2008) Fluorous phase transfer catalyst: from onium salts to crown ethers. J Fluor Chem 129: 920–929. doi: 10.1016/j.jfluchem.2008.06.001 CrossRefGoogle Scholar
  192. 192.
    Qiu W (2000) Fluorinated quaternary ammonium salts. US 6054615Google Scholar
  193. 193.
    Maayan G, Fish RH, Neumann R (2003) Polyfluorinated quaternary ammonium salts of polyoxometalate anions: fluorous biphasic oxidation catalysis with and without fluorous solvents. Org Lett 5: 3547–3550. doi: 10.1021/ol0348598 PubMedCrossRefGoogle Scholar
  194. 194.
    Mercs L, Pozzi G, Quici S (2007) Efficient condensation of carboxylic acids with alcohols catalyzed by fluorous ammonium triflates. Tetrahedron Lett 48: 3053–3056. doi: 10.1016/j.tetlet.2007.02.117 CrossRefGoogle Scholar
  195. 195.
    Shirakawa S, Tanaka Y, Maruoka K (2004) Development of a recyclable fluorous chiral phase-transfer catalyst: application to the catalytic asymmetric synthesis of α-amino acids. Org Lett 6: 1429–1431. doi: 10.1021/ol049724w PubMedCrossRefGoogle Scholar
  196. 196.
    Shen W, Wang LM, Tian H (2008) The synthesis of organoantimony(III) difluorides containing Y,C,Y pincer type ligands using organotin(IV) fluorinating agents. J Fluor Chem 129: 267–273. doi: 10.1016/j.jfluchem.2007.12.002 CrossRefGoogle Scholar
  197. 197.
    Emnet C, Weber KM, Vidal JA, Consorti CS, Stuart AM, Gladysz JA (2006) Syntheses and properties of fluorous quaternary phosphonium salts that bear four ponytails; new candidates for phase transfer catalysts and ionic liquids. Adv Synth Catal 348: 1625–1634. doi: 10.1002/adsc.200606138 CrossRefGoogle Scholar
  198. 198.
    Consorti CS, Jurisch M, Gladysz JA (2007) Ionic transformations in extremely nonpolar fluorous media: phase transfer catalysis of halide substitution reactions. Org Lett 9: 2309–2312. doi: 10.1021/ol0706354 PubMedCrossRefGoogle Scholar
  199. 199.
    He LN, Yasuda H, Sakakura T (2003) New procedure for recycling homogeneous catalyst: propylene carbonate syntheses under supercritical CO2 conditions. Green Chem 5: 92–94. doi: 10.1039/b210007j CrossRefGoogle Scholar
  200. 200.
    Vlád G, Richter FU, Horváth IT (2004) Modular synthesis of fluorous trialkylphosphines. Org Lett 6: 4559–4561. doi: 10.1021/ol0480675 PubMedCrossRefGoogle Scholar
  201. 201.
    Vlád G, Richter FU, Horváth IT (2005) Synthesis of fluorous trialkyl phosphines with the complete exclusion of PH3. Tetrahedron Lett 46: 8605–8608. doi: 10.1016/j.tetlet.2005.09.166 CrossRefGoogle Scholar
  202. 202.
    Montanari F, Quici S, Banfi S (1996) Phase-transfer catalysis. In: Reinhoudt DN (ed) Comprehensive supramolecular chemistry, vol 10. Pergamon, Oxford, pp 389–416Google Scholar
  203. 203.
    Lin WH, Bailey WI, Lagow RJ (1985) The first perfluoro crown ethers. J Chem Soc Chem Commun 9: 1350–1352. doi: 10.1039/c39850001350 CrossRefGoogle Scholar
  204. 204.
    Lin TY, Lin WH, Clark WD, Lagow RJ, Larson SB, Simonsen SH, Lynch VM, Brodbelt JS, Maleknia SD, Liou CC (1994) Synthesis and chemistry of perfluoro macrocycles. J Am Chem Soc 116: 5172–5179 (and references therein). doi: 10.1021/ja00091a022 CrossRefGoogle Scholar
  205. 205.
    Chen J, Zhang YF, Zheng X, Vij A, Wingate D, Meng D, White K, Kirchmeier RL, Shreeve JM (1996) Synthesis of cyclic ethers with fluorinated side chains. Inorg Chem 35: 1590–1601. doi: 10.1021/ic9509645 PubMedCrossRefGoogle Scholar
  206. 206.
    Vincent JM, Rabion A, Yachandra VK, Fish RH (1997) Fluorous biphasic catalysis: complexation of 1,4,7-[C8F17(CH2)3]3-1,4,7-triazacyclononane with [M(C8F17(CH2)2CO2)2] (M = Mn, Co) to provide perfluoroheptane-soluble catalysts for alkane and alkene functionalization in the presence of t-BuOOH and O2. Angew Chem Int Ed Engl 36: 2346–2349. doi: 10.1002/anie.199723461 CrossRefGoogle Scholar
  207. 207.
    Pozzi G, Cavazzini M, Quici S, Fontana S (1997) Metal complexes of a tetraazacyclotetradecane bearing highly fluorinated tails: new catalysts for the oxidation of hydrocarbons under fluorous biphasic conditions. Tetrahedron Lett 38: 7605–7608. doi: 10.1016/S0040-4039(97)01805-4 CrossRefGoogle Scholar
  208. 208.
    Elshani S, Kobzar E, Bartsch RA (2000) Macrocyclic ligands with partially fluorinated sidearms: synthesis and metal ion complexation. Tetrahedron 56: 3291–3301. doi: 10.1016/S0040-4020(00)00248-9 CrossRefGoogle Scholar
  209. 209.
    Stuart AM, Vidal JA (2007) Perfluoroalkylated 4,13-diaza-18-crown-6 ethers: synthesis, phase-transfer catalysis, and recycling studies. J Org Chem 72: 3735–3740PubMedCrossRefGoogle Scholar
  210. 210.
    Pozzi G, Quici S, Fish RH (2007) In: Proceedings of the 2nd international symposium on fluorous technologies (ISoFT’07), Yokohama, Paper O1Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Chun Cai
    • 1
  • Wen-Bin Yi
    • 1
  • Wei Zhang
    • 2
  • Ming-Gui Shen
    • 1
  • Mei Hong
    • 1
  • Li-Yan Zeng
    • 1
  1. 1.Chemical Engineering CollegeNanjing University of Science & TechnologyNanjingChina
  2. 2.Department of ChemistryUniversity of Massachusetts BostonBostonUSA

Personalised recommendations