Molecular Diversity

, Volume 10, Issue 4, pp 567–573 | Cite as

Structure based studies of the adaptive diversification process of congerins

  • Tsuyoshi Shirai
  • Clara Shionyu-Mitsuyama
  • Tomohisa Ogawa
  • Koji Muramoto


The isoforms of a fish galectin, congerins I and II, have several features that make them suitable for a study of accelerated process of molecular diversification based on 3D structures: They have been generated by a gene duplication, and still maintain 47% amino acid sequence identity to each other. Their genes show very high K A/K S ratio, and are though to be components of fish defense system. The crystal systems for a high-resolution analysis are known for both proteins. A series of works with biochemistry, molecular biology, and X-ray crystallography techniques have suggested that the two proteins might have evolved under differential selection pressures. Congerin I appeared to be a stabilized version of galectin-1. Congerin II was shown to be adapted to a new carbohydrate-ligand. The 3D structures of the wild type and mutant proteins have revealed the probable cause and consequence of the selection pressure responsible for the diversification of congerins.

Key words

crystal structure galectin accelerated evolution bioinformatics 



three dimensional


2-N-morpholino ethane sulfonic acid


protein data bank


maximum likelihood


maximum parsimony


standard error


polymerase chain reaction


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barondes, S.H., Castronovo, V., Cooper, D.N.W., Cummings, R.D., Drickamer, K., Feizi, T., Gitt, M.A., Hirabayahi, J., Hughes, C., Kasai, K., Leffler, H., Liu, F., Lotan, R., Mercurio, A.M., Monsigny, M., Pillai, S., Poirer, F., Raz, A., Rigby, P.W.J., Rini, J.M. and Wang, J.L., Galectins: A family of animal β-galactoside-binding lectins, Cell., 76 (1994) 597–598.CrossRefGoogle Scholar
  2. 2.
    Barondes, S.H., Cooper, D.N., Gitt, M.A. and Leffler, H., Galectins. Structure and function of a large family of animal lectins, J. Biol. Chem., 269 (1994) 20807–20810.Google Scholar
  3. 3.
    Kasai, K. and Hirabayashi, J., Galectins: A family of animal lectins that decipher glycocodes, J. Biochem. (Tokyo), 119 (1996) 1–8.Google Scholar
  4. 4.
    Hughes, R.C., The galectin family of mammalian carbohydrate-binding molecules, Biochem. Soc. Trans., 25 (1997) 1194–1198.Google Scholar
  5. 5.
    Kamiya, H., Muramoto, K. and Goto, R., Purification and properties of agglutinins from conger eel, Conger myriaster (Brevoort), skin mucus, Dev. Comp. Immunol., 12 (1988) 309–318.CrossRefGoogle Scholar
  6. 6.
    Muramoto, K. and Kamiya, H., The amino-acid sequence of a lectin from conger eel, Conger myriaster, skin mucus, Biochim. Biophys. Acta, 1116 (1992) 129–136.Google Scholar
  7. 7.
    Muramoto, K., Kagawa, D., Sato, T., Ogawa, T., Nishida, Y. and Kamiya, H., Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 123 (1999) 33–45.CrossRefGoogle Scholar
  8. 8.
    Ogawa, T., Ishii, C., Kagawa, D., Muramoto, K. and Kamiya, H., Accelerated evolution in the protein-coding region of galectin cDNAs, congerin I and congerin II, from skin mucus of conger eel (Conger myriaster), Biosci. Biotechnol. Biochem., 63 (1999) 1203–1208.CrossRefGoogle Scholar
  9. 9.
    Ogawa, T., Ishii, C., Suda, Y., Kamiya, H. and Muramoto, K., High-level expression and characterization of fully active recombinant conger eel galectins in Escherichia coli, Biosci. Biotechnol. Biochem., 66 (2002) 476–480.CrossRefGoogle Scholar
  10. 10.
    Ogawa, T., Shirai, T., Shionyu-Mitsuyama, C., Yamane, T., Kamiya, H. and Muramoto, K., The speciation of conger eel galectins by rapid adaptive evolution, Glyco. J., 19 (2003) 451–458.CrossRefGoogle Scholar
  11. 11.
    Miyata, T. and Yasunaga, T., Molecular evolution of mRNA: A method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application, J. Mol. Evol., 16 (1980) 23–36.CrossRefGoogle Scholar
  12. 12.
    Nei, M. and Gojobori, T., Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol. Biol. Evol., 3 (1986) 418–426.Google Scholar
  13. 13.
    Hill, R.E. and Hastie, N.D., Accelerated evolution in the reactive centre regions of serine protease inhibitors, Nature, 326 (1987) 96–99.CrossRefGoogle Scholar
  14. 14.
    Hughes, A.L. and Nei, M., Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection, Nature, 335 (1988) 167–170.CrossRefGoogle Scholar
  15. 15.
    Nakashima, K., Ogawa, T., Oda, N., Hattori, M., Sakaki, Y., Kihara, H. and Ohno, M., Accelerated evolution of Thimeresurus falvoviridis venom gland phospholipase A2 isozymes, Proc. Natl. Acad. Sci. USA, 90 (1993) 5964–5968.CrossRefGoogle Scholar
  16. 16.
    Endo, T., Ikeo, K. and Gojobori, T., Large-scale search for genes on which positive selection may operate, Mol. Biol. Evol., 13 (1996) 685–690.Google Scholar
  17. 17.
    Sitnikova, T. and Nei, M., Evolution of immunoglobulin kappa chain variable genes in vertebrates, Mol. Biol. Evol., 15 (1998) 50–60.Google Scholar
  18. 18.
    Yang, Z. and Bielawski, J. P., Statistical methods for detecting molecular adaptation, Trends Ecol. Evol., 15 (2000) 496–503.CrossRefGoogle Scholar
  19. 19.
    Shirai, T., Mitsuyama, C., Niwa, Y., Matsui, Y., Hotta, H., Yamane, T., Kamiya, H., Ishii, C., Ogawa, T. and Muramoto, K., High-resolution structure of the conger eel galectin, congerin I, in lactose-liganded and ligand-free forms: Emergence of a new structure class by accelerated evolution, Structure Fold Des., 7 (1999) 1223–1233.CrossRefGoogle Scholar
  20. 20.
    Shirai, T., Matsui, Y., Shionyu-Mitsuyama, C., Yamane, T., Kamiya, H., Ishii, C., Ogawa, T. and Muramoto, K., Crystal structure of a conger eel galectin (congerin II) at 1.45A resolution: Implication for the accelerated evolution of a new ligand-binding site following gene duplication, J. Mol. Biol., 321 (2002) 879–889.CrossRefGoogle Scholar
  21. 21.
    Shionyu-Mitsuyama, C., Ito, Y., Konno, A., Miwa, Y., Ogawa, T., Muramoto, K. and Shirai, T., In vitro evolutionary thermostabilization of congerin II: A limited reproduction of natural protein evolution by artificial selection pressure, J. Mol. Biol., 347 (2005) 385–397.CrossRefGoogle Scholar
  22. 22.
    Lobsanov, Y.D., Gitt, M.A., Leffler, H., Barondes, S.H. and Rini, J.M., X-ray crystal structure of the human dimeric S-lac lectin, L-14-II, in complex with lactose at 2.9-Å resolution, J. Biol. Chem., 268 (1993) 27034–27038.Google Scholar
  23. 23.
    Liao, D., Kapadia, G., Ahmed, H., Vasta, G.R. and Herzberg, O., Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein, Proc. Natl. Acad. Sci. USA, 91 (1994) 1428–1432.CrossRefGoogle Scholar
  24. 24.
    Bourne, Y., Bolgiano, B., Liao, D., Strecker, G., Cantau, P., Herzberg, O., Feizi, T. and Cambillau, C., Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides, Nature Struct. Biol., 1 (1994) 863–870.CrossRefGoogle Scholar
  25. 25.
    Varela, P.F., Solis, D., Diaz-Maurino, T.G., Kaltner, H., Gabius, H.-J. and Romero, A., The 2.15 Å crystal structure of CG-16, the developmentally regulated homodimeric chicken galectin, J. Mol. Biol., 294 (1999) 537–549.CrossRefGoogle Scholar
  26. 26.
    Bianchet, M.A., Ahmed, H., Vasta, G.R. and Amzel, L.M., Soluble β-galactosyl-binding lectin (galectin) from toad ovary: Crystallographic studies of two protein-sugar complexes, Proteins, 40 (2000) 378–388.CrossRefGoogle Scholar
  27. 27.
    Shionyu-Mitsuyama, C., Shirai, T., Ishida, H., Yamane, T., An empirical approach for structure-based prediction of carbohydrate-binding sites on proteins, Protein. Engng., 16 (2003) 467–478.CrossRefGoogle Scholar
  28. 28.
    Walser, P.J., Haebel, P.W., Künzler, N., Sargent, D., Kües, U., Aebi, M. and Ban, N., Structure and functional analysis of the fungal galectin CGL2, Structure 12 (2004) 689–702.Google Scholar
  29. 29.
    Ban, M., Yoon, H.-Y., Demirkan, E., Utsumi, S., Mikami, B. and Yagi, F., Structural basis of a fungal galectin from Agrocybe cylindracea for recognizing sialoconjugate, 351 (2005) 695–706.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Tsuyoshi Shirai
    • 1
    • 2
  • Clara Shionyu-Mitsuyama
    • 3
  • Tomohisa Ogawa
    • 4
  • Koji Muramoto
    • 4
  1. 1.Department of BioscienceNagahama Institute of Bio-Science and TechnologyNagahama, SigaJapan
  2. 2.JST-BIRDNagahama, SigaJapan
  3. 3.Institute for Protein ResearchOsaka UniversitySuitaJapan
  4. 4.Department of Biomolecular Science, Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations