Molecular Diversity

, Volume 10, Issue 2, pp 95–99 | Cite as

Toxicity of Aliphatic Ethers: A Comparative Study

  • Ante Miličević
  • Sonja Nikolić
  • Nenad Trinajstić
Full-length paper


The CROMRsel procedure was used to model the toxicity of aliphatic ethers against mice. The best model obtained is based on three molecular descriptors and is a better model than other QSAR models from the literature. The only comparable model is one by Ren, based on four descriptors.

Key words

aliphatic ethers CROMRsel procedure molecular descriptors QSAR toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walker, J.D., Carlsen, L., Hulzebos, E. and Simon-Hettich, B., Global government applications of analogues, SARs and QSARs to predict aquatic toxicity, chemical or physical properties, environmental fate parameters and health effects of organic chemicals, SAR QSAR Environ. Res., 13 (2002) 607–616.CrossRefPubMedGoogle Scholar
  2. 2.
    Roy, K. and Ghosh, G., QSTR with extended topochemical atom indices. 2. Fish toxicity of substituted benzenes, J. Chem. Inf. Comput. Sci., 44 (2004) 559–567.CrossRefPubMedGoogle Scholar
  3. 3.
    Roy, K. and Ghosh, G., QSTR with extended topochemical atom indices. 3. Toxicity of nitrobenzenes to tetrahymena pyroformis, QSAR Comb. Sci., 23 (2004) 99–108.CrossRefGoogle Scholar
  4. 4.
    Luco, J.M., Gálvez, J., García-Domenech, R. and de Julián-Ortiz, J.V., Structural invariants for prediction of relative toxicity of polychloro dibenzo-p-dioxins and dibenzofurans, Mol. Diversity, 8 (2004) 331–342.CrossRefGoogle Scholar
  5. 5.
    Devillers, J., Linear versus nonlinear SAR modeling of the toxicity ophenol derivatives, SAR QSAR Environ. Res., 15 (2004) 237–249.CrossRefPubMedGoogle Scholar
  6. 6.
    Agrawal, V.K., Srivastava, S. and Khadikar, P.V., QSAR study of phosphoramidothioate (Ace) toxicities in housefly, Mol. Diversity, 8 (2004) 413–419.CrossRefGoogle Scholar
  7. 7.
    Basak, S.C., Grunwald, G.D. and Niemi, G.J., Use of graph-theoretic and geometrical molecular descriptors in structure-activity relationships, In Balaban A.T. (Ed.) Chemical Topology to Three-Dimensional Geometry, Plenum Press, New York, 1997, pp. 73–116.Google Scholar
  8. 8.
    Basak, S.C., Gute, B.D., Lučić, B., Nikolić, S. and Trinajstić, N., A comparative QSAR study of benzamidines complement-inhibitory activity and benzene derivatives acute toxicity, Comput. Chem., 24 (2000) 181–191.CrossRefPubMedGoogle Scholar
  9. 9.
    Basak, S.C., Mills, D., Gute, B.D., Grunwald, G.D. and Balaban, A.T., Applications of topological indices in the property/bioactivity/toxicity prediction of chemicals, In Rouvray D.H and King, R.B. (Eds.) Topology in Chemistry: Discrete Mathematics of Molecules, Horwood, Chichester, 2002, 113–184.Google Scholar
  10. 10.
    Roy, K., Topological descriptors in drug design and modeling studies, Mol. Diversity, 8 (2004) 321–323.CrossRefGoogle Scholar
  11. 11.
    Kier, L.B. and Hall, L.L., Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976, pp. 202–203.Google Scholar
  12. 12.
    Mekenyan, O., Bonchev, D., Sabljić, A. and Trinajstić, N., Application of topological indices to QSAR. The use of the Balaban index and the electropy index for correlations with toxicity of ethers on mice, Acta Pharm. Yugosl., 37 (1987) 75–86.Google Scholar
  13. 13.
    Bogdanov, B., Nikolić, S., Sabljić, A., Trinajstić, N. and Carter, S., On the use of the weighted identification numbers in the QSAR study of the toxicity of aliphatic ethers, J. Quantum Chem.: Quantum Biol. Symp., 14 (1987) 325–330.CrossRefGoogle Scholar
  14. 14.
    Randić, M. and Basak, S.C. On use of the variable connectivity index 1χf in QSAR: Toxicity of aliphatic ethers, J. Chem. Inf. Comput. Sci., 41 (2001) 614–618.CrossRefPubMedGoogle Scholar
  15. 15.
    Ren, B. Novel atomic level AI topological descriptors for QSPR/QSAR modeling: Normal boiling points and toxicity of aliphatic ethers, unpublished.Google Scholar
  16. 16.
    Randić, M., On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975) 6609–6615.CrossRefGoogle Scholar
  17. 17.
    Randić, M., The connectivity index 25 years after, J. Mol. Graphics Modell., 20 (2001) 19–35.CrossRefGoogle Scholar
  18. 18.
    Kier, L.B. and Hall, L.H., Molecular connectivity. VII. Specific treatment of heteroatoms, J. Pharm. Sci., 65 (1976) 1806–1809.PubMedCrossRefGoogle Scholar
  19. 19.
    Szymanski, K., Müller, W.R., von Knop, J. and Trinajstić, N., On Randić's molecular identification numbers, J. Chem. Inf. Comput. Sci., 25 (1985) 413–415.CrossRefGoogle Scholar
  20. 20.
    Szymanski, K., Müller, W.R., von Knop, J. and Trinajstić, N., Molecular ID numbers, Croat. Chem. Acta, 59 (1986) 719–723.Google Scholar
  21. 21.
    Szymanski, K., Müller, W.R., von Knop, J. and Trinajstić, N., On the identification numbers for chemical structures, Int. J. Quantum Chem.: Quantum Chem. Symp., 20 (1986) 173–183.CrossRefGoogle Scholar
  22. 22.
    Balaban, A.T., Highly discriminating distance-based topological index, Chem. Phys. Lett., 89 (1982) 399–804.CrossRefGoogle Scholar
  23. 23.
    Barysz, M., Jashari, G., Lall,. R.S., Srivastava, A.K. and Trinajstić, N., On the distance matrix of molecules containing heteroatoms, In King, R.B. (Ed.) Chemical Applications of Topology and Graph Theory, Elsevier, Amsterdam, 1983, 222–230.Google Scholar
  24. 24.
    Balaban, A.T. and Filip, P.A., Computer program for topological index J (average distance sum connectivity), MATCH – Commun. Math. Comput. Chem., 16 (1984) 163–190.Google Scholar
  25. 25.
    Balaban, A.T., Chemical graphs. 48. Topological index J for heteroatom-containing molecules taking into account periodicities of element properties, MATCH – Commun. Math. Comput. Chem., 21 (1986) 115–122.Google Scholar
  26. 26.
    Ivanciuc, O., Ivanciuc, T. and Balaban, A.T., Design of topological indices. 10. Parameters based on electronegativity and covalent radius for the computation of molecular graph descriptors for heteroatom-containing molecules, J. Chem. Inf. Comput. Sci., 38 (1988) 395–401.CrossRefGoogle Scholar
  27. 27.
    Balaban, A.T. and J. Chem. Inf. Comput. Sci., Ivanciuc, O., FORTRAN-77 computer program for calculating the topological index J for molecules containing heteroatoms, In Graovac, A. (Ed.) MATH/CHEM/COMP 1988, Elsevier, Amsterdam, 1989, 193–211.Google Scholar
  28. 28.
    Bonchev, D. and Trinajstić, N., Chemical information theory: Structural aspects, Int. J. Quantum Chem.: Quantum Chem. Symp., 16 (1982) 463–480.Google Scholar
  29. 29.
    Lučić, B. and Trinajstić, N., Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling, 39 (1999) 121–132.Google Scholar
  30. 30.
    Lučić, B., Trinajstić, N., Sild, S., Karelson, M. and Katritzky, A.R., A new efficient approach for variable selection based on multiregression: prediction of gas chromatographic retention times and response factors, J. Chem. Inf. Comput. Sci., 39 (1999) 610–621.CrossRefGoogle Scholar
  31. 31.
    Amić, D., Davidović-Amić, D., Bšelo, Lučić, B. and Trinajstić, N., Prediction of pK values, half-lives and electronic spectra of flavylium salts from molecular structure, J. Chem. Inf. Comput. Sci., 39 (1999) 967–973.CrossRefGoogle Scholar
  32. 32.
    Lučić, B., Amić, D. and Trinajstić, N., Nonlinear multivariate regression outperforms several concisely designed neural networks on three QSPR data sets, J. Chem. Inf. Comput. Sci., 40 (2000) 403–413.CrossRefPubMedGoogle Scholar
  33. 33.
    Piližota, T., Lučić, B. and Trinajstić, N., Use of variable selection in modeling the secondary structural content of proteins from their composition of amino acid residues, J. Chem. Inf. Comput. Sci., 44 (2004) 113–121.CrossRefPubMedGoogle Scholar
  34. 34.
    Miliević, A. and Nikolić, S., On Variable Zagreb Indices, Croat. Chem. Acta, 77 (2004) 97–101.Google Scholar
  35. 35.
    Nikolić, S., Miličević, A. and Trinajstić, N., Graphical matrices in chemistry, Croat. Chem. Acta, 78 (2005) 241–250.Google Scholar
  36. 36.
    Trinajstić, N., Chemical Graph Theory, (2nd revised edn), CRC Press, Boca Raton, 1992.Google Scholar
  37. 37.
    Wilson, R.J., Introduction to Graph Theory, Oliver & Boyd, Edinburgh, 1972, p. 12.Google Scholar
  38. 38.
    Marsh, D.P. and Leake, C.D., The comparative anesthetic activity of aliphatic ethers, Anaesthesiology 11 (1950) 455–463.CrossRefGoogle Scholar
  39. 39.
    Randić, M., Novel graph theoretical approach to heterosystems in QSAR, Chemometrics Intel. Lab. Syst., 10 (1991) 213–227.CrossRefGoogle Scholar
  40. 40.
    Xu, L., Chemometrical Method, Scientific Press of China, Beijing, 1996.Google Scholar
  41. 41.
    Ren, B, A new topological index for QSPR of alkanes, J. Chem. Inf. Comput. Sci., 39 (1999) 139–143.CrossRefGoogle Scholar
  42. 42.
    Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000, 507.Google Scholar
  43. 43.
    Ren, B., Novel atom-type AI indices for QSPR of alcohols, Comput. Chem., 26 (2002) 223–235.CrossRefPubMedGoogle Scholar
  44. 44.
    Ren, B., Application of novel atom-type AI topological indices to QSPR studies of alkanes, Comput. Chem., 26 (2002) 357–369.CrossRefPubMedGoogle Scholar
  45. 45.
    Ren, B., Novel Atom-level-based AI topological descriptors: Application to QSPR/QSAR modeling, J. Chem. Inf. Comput. Sci., 42 (2002) 858–868.CrossRefPubMedGoogle Scholar
  46. 46.
    Ren, B., Application of novel atom-type AI topological indices in the structure-propertycorrealtions, J. Mol. Struct. (Theochem), 586 (2002) 137–148.CrossRefGoogle Scholar
  47. 47.
    Ren, B., Atom-type-based AI topological descriptors: Application in structure-boiling point correlations of oxo organic compounds, J. Chem. Inf. Comput. Sci., 43 (2003) 161–169.CrossRefPubMedGoogle Scholar
  48. 48.
    Ren, B., New atom-type-based AI topological indices: Application to QSPR studies of aldehydes and ketones, J. Computer-Aided Mol. Design, 17 (2003) 607–619.CrossRefGoogle Scholar
  49. 49.
    Hoffmann, R., Minkin, V.I. and Carpenter, B.K., Ockham's razor and chemistry, Bull. Soc. Chim. Fr., 133 (1996) 117–130.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Ante Miličević
    • 1
  • Sonja Nikolić
    • 2
  • Nenad Trinajstić
    • 2
  1. 1.The Institute of Medical Research and Occupational HealthZagrebCroatia
  2. 2.The Rugjer Bošković InstituteZagrebCroatia

Personalised recommendations