Molecular Diversity

, Volume 9, Issue 1–3, pp 3–13 | Cite as

Leaf essential oil composition of five Zanthoxylum species from Monteverde, Costa Rica

  • William N. Setzer
  • Joseph A. Noletto
  • Robert O. Lawton
  • William A. Haber
Full-length paper


The leaf essential oils from five species of Zanthoxylum (Rutaceae) from Monteverde, Costa Rica, have been obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The species examined include Z. fagara, Z. acuminatum, Z. melanostictum, Z. monophyllum, and an undescribed species. The most abundant classes of compounds found in Zanthoxylum leaf oils are acyclic and menthane monoterpenoids as well as simple alcohols, aldehydes, and ketones. In terms of molecular diversity, menthane and acyclic monoterpenoids, cadinane and mesocyclic sesquiterpenoids, and simple alcohols, aldehydes, and ketones dominate the essential oils of Zanthoxylum species. Monoterpenoids make up the majority of the mass of the leaf oils of Z. monophyllum, Z. acuminatum, Z. fagara, and Zanthoxylum sp. nov. Linalool, 4-terpineol, α-terpineol, and trans-2-hexenol, are found in all of the Zanthoxylum species examined in this study.


composition Costa Rica leaf oil linalool Monteverde Rutaceae 4-terpineol α-terpineol Zanthoxylum 



above sea level


diameter at breast height


gas chromatograph/chromatography


mass spectrum/spectrometer


mass selective detector


National Institute of Science and Technology


pounds per square inch


retention index

sp. nov.

new species.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, K.L., Lawton, R.O. and Butler, P.R., The physical environment, In Nadkarni, N.M. and Wheelwright, N.T. (Eds.), Monteverde: Ecology and Conservation of a Tropical Cloud Forest, Oxford University Press, New York (2000) pp. 15–38.Google Scholar
  2. 2.
    Haber, W.A., Plants and vegetation, in Nadkarni, N.M. and Wheelwright, N.T. (Eds.), Monteverde: Ecology and Conservation of a Tropical Cloud Forest, Oxford University Press, New York (2000) pp. 39–94.Google Scholar
  3. 3.
    Schultes, R.E. and Raffauf, R.F., The Healing Forest. Medicinal and Toxic Plants of the Northwest Amazonia, Dioscorides Press, Portland, Oregon, 1990.Google Scholar
  4. 4.
    Gentry, A.H., A Field Guide to the Families and Genera of Woody Plants of Northwest South America, University of Chicago Press, Chicago, Illinois, 1993.Google Scholar
  5. 5.
    Shiva, M.P., Lehri, A. and Shiva, A., Aromatic & Medicinal Plants: Yielding Essential Oil for Pharmaceutical, Perfumery, Cosmetic Industries and Trade, International Book Distributors, Dehradun, India, 2002.Google Scholar
  6. 6.
    Kalyani, G.A., Aithal, K.S. and Srivastava, K.K., In vitro anthelmintic activity of essential oil from the fruits of Zanthoxylum limonella, Fitoterapia, 60 (1989) 160–162.Google Scholar
  7. 7.
    Itthipanichpong, C., Ruangrungsi, N. and Pattanaautsahakit, C., Chemical compositions and pharmacological effects of essential oil from the fruit of Zanthoxylum limonella, J. Med. Assoc. Thai., 85(suppl 1) (2002) S344–S354.Google Scholar
  8. 8.
    Hutchings, A., Scott, A.H., Lewis, G. and Cunningham, A., Zulu Medicinal Plants: An Inventory, University of Natal Press, Pietermaritzburg, 1996.Google Scholar
  9. 9.
    McGaw, L.J., Jager, A.K. and van Staden, J., Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants, J. Ethnopharmacol., 72 (2000) 247–263.Google Scholar
  10. 10.
    Setzer, W.N., Schmidt, J.M., Eiter, L.C. and Haber, W.A., The leaf oil composition of Zanthoxylum fagara (L.) Sarg. from Monteverde, Costa Rica, and its biological activities, J. Essent. Oil Res., 16 (in press).Google Scholar
  11. 11.
    Adams, R.P., Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing, Carol Stream, Illinois, 2001.Google Scholar
  12. 12.
    Epstein, W.W. and Gaudioso, L.A., Volatile oil constituents of sagebrush, Phytochemistry, 23 (1984) 2257–2262.Google Scholar
  13. 13.
    Lota, M.-L., de Rocca Serra, D., Tomi, F. and Casanova, J., Chemical variability of peel and leaf essential oils of mandarins from Citrus reticulata Blanco, Biochem. System. Ecol., 28 (2000) 61–78.Google Scholar
  14. 14.
    Lota, M.-L., de Rocca Serra, D., Tomi, F. and Casanova, J., Chemical variability of peel and leaf essential oils of 15 species of mandarins, Biochem. System. Ecol., 29 (2001) 77–104.Google Scholar
  15. 15.
    Ehret, C. and Maupetit, P., Two sinapyl alcohol derivatives from bergamot essential oil, Phytochemistry, 21 (1980) 2985.Google Scholar
  16. 16.
    Gancel, A.L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F. and Brillouet, J.M., Leaf volatile compounds of seven citrus somatic tetraploid hybrids sharing willow leaf mandarin (Citrus deliciosa Ten.) as their common parent, J. Agric. Food Chem., 51 (2003) 6006–6013.Google Scholar
  17. 17.
    Tirado, C.B., Stashenko, E.E., Combariza, M.Y. and Martinez, J.R., Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry, J. Chromatogr. A, 697 (1995) 501–513.Google Scholar
  18. 18.
    Kaneko, N., Hasegawa, S., Hirose, Y., 1985. Terpenoids from seeds of Abies firma, Phytochemistry, 24 (1985) 185–186.Google Scholar
  19. 19.
    Li, H. and Madden, J.L., Analysis of leaf oils from a Eucalyptus species trial, Biochem. System. Ecol., 23 (1995) 167–177.Google Scholar
  20. 20.
    Setzer, W.N., Setzer, M.C., Moriarity, D.M., Bates, R.B., and Haber, W.A., Biological activity of the essential oil of Myrcianthes sp. nov. “black fruit” from Monteverde, Costa Rica, Planta Med., 65 (1999) 468–469.Google Scholar
  21. 21.
    Homer, L.E., Leach, D.N., Lea, D., Slade Lee, L., Henry, R.J. and Baverstock, P.R., Natural variation in the essential oil content of Melaleuca alternifolia Cheel (Myrtaceae), Biochem. System. Ecol., 28 (2000) 367–382.Google Scholar
  22. 22.
    De Feo, V., De Simone, F. and Senatore, F., Potential allelochemicals from the essential oil of Ruta graveolens, Phytochemistry, 61 (2002) 573–578.Google Scholar
  23. 23.
    Hognadottir, A. and Rouseff, R.L., Identification of aroma active compounds in orange essence oil using gas chromatography–olfactometry and gas chromatography–mass spectrometry, J. Chromatogr. A, 998 (2003) 201–211.Google Scholar
  24. 24.
    Tava, A. and Pecetti, L., Volatiles from Medicago sativa complex flowers, Phytochemistry, 45 (1997) 1145–1148.Google Scholar
  25. 25.
    Avato, P. and Tava, A., Acetylenes and terpenoids of Bellis perennis, Phytochemistry, 40 (1995) 141–147.Google Scholar
  26. 26.
    Ngassoum, M.B., Essia-Ngang, J.J., Tatsadjieu, L.N., Jirovetz, L., Buchbauer, G. and Adjoudji, O., Antimicrobial study of essential oils of Ocimum gratissimum leaves and Zanthoxylum xanthoxyloides fruits from Cameroon, Fitoterapia, 74 (2003) 284–287.Google Scholar
  27. 27.
    Stashenko, E.E., Acosta, R. and Martnez, J.R., High-resolution gas-chromatographic analysis of the secondary metabolites obtained by subcritical-fluid extraction from Colombian rue (Ruta graveolens L.), J. Biochem. Biophys. Meth., 43 (2000) 379–390.Google Scholar
  28. 28.
    Chakraborty, D.P., Barman, B.K. and Bose, P.K., On the constitution of murrayanine, a carbazole derivative isolated from Murraya koenigii Spreng, Tetrahedron, 21 (1965) 681–685.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • William N. Setzer
    • 1
  • Joseph A. Noletto
    • 1
  • Robert O. Lawton
    • 2
  • William A. Haber
    • 3
    • 4
  1. 1.Department of ChemistryUniversity of Alabama in HuntsvilleHuntsvilleU.S.A.
  2. 2.Department of Biological SciencesUniversity of Alabama in HuntsvilleHuntsvilleU.S.A.
  3. 3.Missouri Botanical GardenSt. LouisMissouriU.S.A.
  4. 4.Apdo. 50-5655Monteverde, PuntarenasCosta RicaCentral America

Personalised recommendations