Optimization of Pultrusion Processes for an Industrial Application

Two optimization problems are formulated to improve the effectiveness and productivity of pultrusion processes, to preserve the quality of pultruded profiles, and to take into account the ambient industrial shop temperature and requirements of process technologists. To solve these problems, an optimization methodology using designed computer experiments and the response surface technique was developed. The effects of room temperature and curing allowed behind the die exit on the energy consumption and pull speed were investigated. A more accurate and realistic process optimization was achieved by the temperature control strategy with heater switch-on and -off operations. This indirect optimization methodology allowed us to develop interactive technological maps on the basis of an accessible-to-all Excel code for technologists working in industrial shops. As an example, demonstrating the effectiveness of the methodology developed and utilization of the interactive technological map, the optimization of a real pultrusion process, producing two rod profiles with ears simultaneously, is carried out.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

References

  1. 1.

    J. Li, S. C. Joshi, and Y. C. Lam, “Curing optimization for pultruded composite sections,” Compos. Sci. Technol., 62, 457-467 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    P. Carlone, G. S. Palazzo, and R. Pasquino, “Pultrusion manufacturing process development: Cure optimization by hybrid computational methods,” Comput. Math. Appl., 53, 1464-1471 (2007).

    Article  Google Scholar 

  3. 3.

    Y. C. Lam, J. Li, and S. C. Joshi, “Simultaneous optimization of die-heating and pull-speed in pultrusion of thermosetting composites,” Polym. Compos., 24, No. 1, 199-209 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    S. C. Joshi, T. C. Lam, and U. W. Tun, “Improved cure optimization in pultrusion with preheating and die-cooler temperature,” Compos. Part A, 34, 1151-1159 (2003).

    Article  Google Scholar 

  5. 5.

    R. M. L. Coelho and V. M. A. Calado, “An optimization procedure for the pultrusion process based on a finite-element formulation,” Polym. Compos., 23, No. 3, 329-341 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    J. A. D. Wilcox and D. T. Wright, “Towards pultrusion process optimization using artificial neural networks,” J. Mater. Process. Technol., 83, 131–141 (1998).

    Article  Google Scholar 

  7. 7.

    X. Chen, H. Xie, H. Chen, and F. Zhang, “Optimization for CFRP pultrusion process based on genetic algorithm-neural network,” Inter. J. Mater. Forming, 3, No. 2, 1391-1399 (2010).

    Article  Google Scholar 

  8. 8.

    C. C. Tutum, K. Deb, and I. Baran, “Constrained efficient global optimization for pultrusion process,” Mater. Manuf. Process., 30, No. 4, 538-551 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    C. C. Tutum, I. Baran, and K. Deb, “Optimum design of pultrusion process via evolutionary multi-objective optimization,” Int. J. Adv. Manuf. Technol., 72, 1205-1217 (2014).

    Article  Google Scholar 

  10. 10.

    S. C. Joshi, Y. C. Lam, and K. Zaw, “Optimization for quality thermosetting composites pultrudate through die heater layout and power control,” Proc. of 16th Int. Conf. Compos. Mater., Kyoto, 7 P (2007).

    Google Scholar 

  11. 11.

    C. F. J. Wu and M. Hamada, Experiments: Planning, Analysis, and Parameter Design Optimization, John Wiley & Sons, New York (2000).

    Google Scholar 

  12. 12.

    R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York (2002).

    Google Scholar 

  13. 13.

    E. Barkanov, P. Akishin, N. L. Miazza, and S. Galvez, “ANSYS-based algorithms for a simulation of pultrusion processes,” Mech. Adv. Mater. Struc., 24, No. 5, 377-384 (2017).

    Article  Google Scholar 

  14. 14.

    E. Barkanov, P. Akishin, E. Namsone, A. Bondarchuk, and N. Pantelelis, “Real time characterization of pultrusion processes with a temperature control,” Mech. Compos. Mater., 56, No. 2, 135-148 (2020).

    Article  Google Scholar 

  15. 15.

    E. Barkanov, P. Akishin, N. L. Miazza, S. Galvez, and N. Pantelelis, “Experimental validation of thermochemical algorithm for a simulation of pultrusion processes,” J. Phys. Conf. Ser., 991, 012009 (2018).

    Article  Google Scholar 

  16. 16.

    J. Auzins, A. Janushevskis, J. Janushevskis, and E. Skukis, “Software EDAOpt for experimental design, analysis and multiobjective robust optimization,” Proc. of 1st Int. Conf. Eng. Appl. Sc. Optim., Kos, 1055-1077 (2014).

  17. 17.

    D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York (2017).

    Google Scholar 

  18. 18.

    F. A. C. Viana, R. T. Haftka, and V. Steffen, “Multiple surrogates: how cross-validation errors can help us to obtain the best predictor,” Struct. Multidiscipl. Optim., 39, 439-457 (2009).

    Article  Google Scholar 

  19. 19.

    URL: http://www.compor.lv/en (reference date 22.09.2020).

  20. 20.

    E. Namsone, A. Arshanitsa, and A. Morozovs, “Analysis of curing kinetic models for polyester resin CL ISO 112 G,” Key Eng. Mater., 850, 70-75 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of European Regional Development Fund for the project No. 1.1.1.1/18/A/053 “An effectiveness improvement of conventional pultrusion processes” is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Barkanov.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 6, pp. 1015-1036, November-December, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barkanov, E., Akishin, P., Namsone, E. et al. Optimization of Pultrusion Processes for an Industrial Application. Mech Compos Mater 56, 697–712 (2021). https://doi.org/10.1007/s11029-021-09916-7

Download citation

Keywords

  • pultrusion
  • industrial process
  • optimization
  • experimental design
  • response surfaces
  • interactive technological map