Skip to main content
Log in

Numerical Analysis of the Fracture Toughness of Low-Density Open-Cell Voronoi Foams

  • Published:
Mechanics of Composite Materials Aims and scope

In this study, the geometry of open-cell foams is simulated using a model based on Voronoi tessellations. The fracture toughness of open-cell foams with Voronoi cells, including Mode-I, Mode-II, and the mixed-mode ones, are calculated by the finite-element method based on a micromechanical model. Cracks in the micromechanical model are created through removing some number of cells pertaining to the crack length. Displacement boundary conditions are applied to the boundary of a small region surrounding the crack tip, which are calculated based on the linear elastic fracture mechanics. The effects of relative density, disorder factor and sample size on the predicted elastic properties and fracture toughness of open-cell foams with Voronoi cells are discussed and compared with results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. R. Phelan, D. Weaire, and K. Brakke, “Computation of equilibrium foam structures using the surface evolver,” Experimental Mathematics, 4, 181-192 (1995).

    Article  Google Scholar 

  2. D. Baillis and J. F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quantitative Spectroscopy & Radiative Transfer, 67, 327-363 (2000).

    Article  Google Scholar 

  3. K. Boomsma and D. Poulikakos, “On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam,” Int. J. Heat Mass Transfer, 44, 827-836 (2001).

    Article  Google Scholar 

  4. A. Bhattacharya, V. V. Calmidi, and R. L. Mahajan, “Thermophysical properties of high porosity metal foams,” Int. J. Heat Mass Transfer, 45, 1017-1031 (2002).

    Article  Google Scholar 

  5. D. Edouard, “The effective thermal conductivity for “slim” and “fat” foams,” Am. Institute of Chemical Engineers, 57, No. 6, 1646-1651 (2011).

    Article  Google Scholar 

  6. H. T. Truong, M. Lacroix, C. H. Pham, et al., “Towards a more realistic modeling of solid foam: Use of the pentagonal dodecahedron geometry,” Chem. Eng. Sci., 64, 5131-5142 (2009).

    Article  Google Scholar 

  7. M. W. D. Van der Burg, V. Shulmeister, E. Van der Geissen, et al., “On the linear elastic properties of regular and random open-cell foam models,” J. Cellular Plastics, 33, No. 1, 31-54 (1997).

    Article  Google Scholar 

  8. J. E. Li and B. L. Wang, “Equivalent thermal conductivity of open cell ceramics foams at high temperatures,” Int. J. Thermophys., 35, 105-122 (2014).

    Article  Google Scholar 

  9. R. Coquard, D. Rochais, and D. Ballis, “Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures,” Fire Technol., 48, 699-732 (2012).

    Article  Google Scholar 

  10. C. C. Tseng, R. L. Sikorski, R. Viskanta, and M. Y. Chen, “Effect of foam properties on heat transfer in open-cell foam inserts.” J. Am. Ceramic Soc., 95, No. 6, 2015-2021 (2012).

    Article  Google Scholar 

  11. M. Loretz, R. Coquard, D. Bailli, et al, “Metallic foams: radiative properties comparison between different models,” J. Quantitative Spectroscopy & Radiative Transfer, 109, No. 1, 16-27 (2008).

    Article  Google Scholar 

  12. A. Kaemmerlen, C. Voc, F. Asllanaja, G. Jeandela, and D. Baillis, “Radiative properties of extruded polystyrene foams: predictive model and experimental results,” J. Quantitative Spectroscopy & Radiative Transfer, 11, 865-877 (2010).

    Article  Google Scholar 

  13. P. C. Tseng and H. S. Chu, “An experimental study of the heat transfer in PS foam insulation,” Heat Mass Transfer, 45, 399-406 (2009).

    Article  Google Scholar 

  14. S. K. Nammi, P. Myler, and G. Edwards, “Finite-element analysis of closed-cell aluminium foam under quasi-static loading,” Mater. Des., 31, No. 2, 712-722 (2010).

    Article  Google Scholar 

  15. Y. An, C. Wen, P. Hodgson, et al, “Investigation of Cell Shape Effect on the Mechanical Behaviour of Open-cell Metal Foams,” Computational Mater. Sci., 55, No. 5, 1-9 (2012).

    Article  Google Scholar 

  16. U. E. Ozturk and G. Anlas, “Finite-element analysis of expanded polystyrene foam under multiple compressive loading and unloading,” Mater. Des., 32, No. 2, 773-780 (2011).

    Article  Google Scholar 

  17. J. B. Sha, T. H. Yip, and M. H. Teo, “FEM Modelling of single-core sandwich and 2-core multilayer beams containing foam aluminum core and metallic face sheets under monolithic bending,” Progress in Natural Sci.: Mater. Int., 21, No. 2, 127-138 (2011).

    Article  Google Scholar 

  18. P. Thiyagasundaram, B. V. Sankar, and N. K. Arakere, “Elastic properties of open-cell foams with tetrakaidecahedral cells using finite-element analysis,” AIAA J., 48, No. 4, 818-828 (2010).

    Article  Google Scholar 

  19. S. K. Maiti, M. F. Ashby, and L. J. Gibson, “Fracture-toughness of brittle cellular solids,” Scr. Metall, 18, 213-217 (1984).

    Article  Google Scholar 

  20. J. S. Huang and L. J. Gibson, “Fracture-toughness of brittle foams,” Acta Metall. Mater., 39, 1627-1636 (1991).

    Article  Google Scholar 

  21. J. S. Huang and L. J. Gibson, “Fracture-toughness of brittle honeycombs,” Acta Metall. Mater., 39, 1617-1626 (1991).

    Article  Google Scholar 

  22. R. Brezny and D. J. Green, “The effect of cell-size on the mechanical-behavior of cellular materials,” Acta Metall. Mater., 38, 2517-2526 (1990).

    Article  Google Scholar 

  23. R. Brezny and D. J. Green, “Factors controlling the fracture-resistance of brittle cellular materials,” J. Am. Ceram. Soc., 74, 1061-1065 (1991).

    Article  Google Scholar 

  24. R. Brezny, D. J. Green, and C. Q. Dam, “Evaluation of strut strength in open-cell ceramics,” J. Am. Ceram. Soc., 72, 885-889 (1989).

    Article  Google Scholar 

  25. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, UK (1997).

    Book  Google Scholar 

  26. S. Choi and B. V. Sankar, “Fracture toughness of carbon foam,” J. Compos. Mater., 37, 2101-2016 (2003).

    Article  Google Scholar 

  27. S. Choi and B. V. Sankar, “A micromechanical method to predict the fracture toughness of cellular materials,” Int. J. Solids Struct., 42, 1797-1817 (2005).

    Article  Google Scholar 

  28. J. Wang, “Fracture toughness of cellular materials using finite-element based micromechanics,” Doctoral Dissertation, University of Florida, Gainesville, Florida (2007).

  29. P. Thiyagasundaram, J. Wang, B. V. Sankar, et al., “Fracture toughness of foams with tetrakaidecahedral unit cells using finite-element based micromechanics,” Eng. Fracture Mech., 78, No. 6, 1277-1288 (2011).

    Article  Google Scholar 

  30. F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental geometric data structure,” ACM Computing Surveys, 23, No. 3, 345-405 (1991).

    Article  Google Scholar 

  31. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Pergamon Press, Oxford (1988).

    Google Scholar 

  32. H. X. Zhu, J. F. Knott, and N. J. Mills, “Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells,” J. Mech. Phys. Solids, 45, No. 3, 319-343 (1997).

    Article  Google Scholar 

  33. W. E. Warren and A. M. Kraynik, “The linear elastic properties of open-cell foams,” J. Appl. Mech., 55, 341-346 (1988).

    Article  Google Scholar 

  34. A. P. Roberts and E. J. Garboczi, “Elastic properties of model random three-dimensional open-cell solids,” J. Mech. Phys. Solids, 50, 33-55 (2002).

    Article  Google Scholar 

  35. G. C. Sih and H. Liebowitz, Mathematical Theories of Brittle Fracture, Academic Press, New York–London (1968).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (Project No. 11502101) and the Jinling Institute of Technology Research Innovation Foundation, China (Project No. jit-b-201515). The authors are very grateful to the anonymous referee for providing a number of comments on their manuscript, which were very useful for improving the quality and presentation of the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Li.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 54, No. 6, pp. 1137-1152, November-December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.E., Wang, B.L. & Guo, S.L. Numerical Analysis of the Fracture Toughness of Low-Density Open-Cell Voronoi Foams. Mech Compos Mater 54, 789–798 (2019). https://doi.org/10.1007/s11029-019-9783-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-9783-7

Keywords

Navigation