Skip to main content

Advertisement

Log in

Fatigue Life of Megawatt-Scale Composite Wind Turbine Blades with Shallow-Angled Laminates

  • Published:
Mechanics of Composite Materials Aims and scope

The fatigue life of megawatt-scale composite wind turbine blades implemented with shallow-angled laminates is investigated. Full dynamic simulations of a 5-MW 3-bladed horizontal-axis wind turbine were carried out to estimate the incident fatigue loads. The fatigue stress histories experienced by lay up materials were then computed using a finite-element model of the composite blade developed to ply-level details. Thereafter, the fatigue life of blade was estimated considering the 100% availability of the turbine for the site-specific annual wind distribution related to the wind turbine class IB. It is demonstrated that the application of shallow-angled laminates leads to a more durable design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. D. A. Griffin and M. D. Zuteck, “Scaling of composite wind turbine blades for rotors of 80 to 120 meter diameter,” Journal of Solar Energy Engineering, 123, No. 4, 310-318 (2001).

    Article  Google Scholar 

  2. D. T. Griffith and T. D. Ashwill, The Sandia 100-meter All-glass Baseline Wind Turbine Blade: SNL100-00, Sandia National Laboratories Technical Report, SAND2011-3779 (2011).

  3. J. Peeringa et al., UpWind 20MW Wind Turbine Pre-Design, ECN, Paper No. ECN-E–11-017 (2011).

  4. S. Cavazzi and A. G. Dutton, “An offshore wind energy geographic information system (OWE-GIS) for assessment of the UK’s offshore wind energy potential,” Renewable Energy, 87, 212-228 (2016).

    Article  Google Scholar 

  5. J. H. Koh and E. Y. K. Ng, “Downwind offshore wind turbines: Opportunities, trends and technical challenges,” Renewable and Sustainable Energy Reviews, 54, 797-808 (2016).

    Article  Google Scholar 

  6. J. Schweizer et al., “Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea,” Applied Energy, 177, 449-463 (2016).

    Article  Google Scholar 

  7. J. Stentoft et al., “Reducing cost of energy in the offshore wind energy industry: The promise and potential of supply chain management,” Int. J. of Energy Sector Management, 10, No. 2, 151-171 (2016).

    Article  Google Scholar 

  8. International Electrotechnical Commission Standard IEC61400-1: Wind turbine-Part1:Design Requirements (2005).

  9. G. Lloyd, Guideline for the Certification of Offshore Wind Turbines (2005).

  10. G. Le. Gourieres, Wind Power Plants: Theory and Design, Elsevier (2014).

  11. R. P. L. Nijssen, Fatigue Life Prediction and Strength Degradation of Wind Turbine Rotor Blade Composites, TU Delft, Delft University of Technology (2006).

  12. S. K. Ha, K. Hayat, and L. Xu, “Effect of shallow-angled skins on the structural performance of the large-scale wind turbine blade,” Renewable energy, 71, 100-112 (2014).

    Article  Google Scholar 

  13. K. Hayat and S. K. Ha, “Flutter performance of large-scale wind turbine blade with shallow-angled skins,” Compos. Struct., 132, 575-583 (2015).

    Article  Google Scholar 

  14. V. A. Passipoularidis and P. Brøndsted, “Fatigue evaluation algorithms,” Matrix, 10, 67, 2009.

    Google Scholar 

  15. M. A. Miner, “Cumulative damage in fatigue,” J. Appl. Mech., 12, No. 3, 159-162 (1945).

    Google Scholar 

  16. J. A. Epaarachchi and P. D. Clausen, “An empirical model for fatigue behavior prediction of glass fiber-reinforced plastic composites for various stress ratios and test frequencies,” Composites: Part A, 34, No. 4, 313-326 (2003).

    Article  Google Scholar 

  17. H. A. Whitworth, “A stiffness degradation model for composite laminates under fatigue loading,” Compos. Struct., 40, No. 2, 95-101 (1997).

    Article  Google Scholar 

  18. X. Diao, L. Ye, and Y.-W. Mai, “A statistical model of residual strength and fatigue life of composite laminates,” Compos. Sci. Technol., 54, No. 3, 329-336 (1995).

    Article  CAS  Google Scholar 

  19. K. L. Reifsnider, “The critical element model: a modeling philosophy,” Eng. Fracture Mech., 25, No. 5-6, 739-749 (1986).

    Article  Google Scholar 

  20. J. Varna, R. Joffe, and R. Talreja, “A synergistic damage-mechanics analysis of transverse cracking in [±θ/904]s laminates,” Compos. Sci. Technol., 61, No. 5, 657-665 (2001).

    Article  Google Scholar 

  21. M. M. Shokrieh and L. B. Lessard, “Progressive fatigue damage modeling of composite materials, Part I: Modeling,” J. Compos. Mater., 34, No. 13, 1056-1080 (2000).

    Article  Google Scholar 

  22. T. P. Philippidis and A. P. Vassilopoulos, “Fatigue strength prediction under multiaxial stress,” J. Compos. Mater., 33, No. 17, 1578-1599 (1999).

    Article  CAS  Google Scholar 

  23. T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi, Wind Energy Handbook, John Wiley & Sons (2011).

  24. D. A. Spera, Introduction to Modern Wind Turbines, ASME Press: New York (1994).

    Google Scholar 

  25. J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained: Theory, Design and Application, John Wiley & Sons (2010).

  26. D. N. Veritas, “Design and manufacture of wind turbine blades, offshore and onshore wind turbines,” DNV Standard, DNV-DS-J102, 2010-11 (2010).

  27. A. Vassilopoulos, Fatigue Life Prediction of Composites and Composite Structures, Elsevier (2010).

  28. C. W. Kensche, Fatigue of Materials and Components for Wind Turbine Rotor Blades, Office for Official Publ. of the Europ. Communities (1996).

  29. J. F. Mandell and D. D. Samborsky, DOE/MSU Composite Material Fatigue Database: Test Methods, Materials, and Analysis, Sandia National Laboratories Technical Report, SAND-97-3002 (1997).

  30. P. K. Fossum et al., “Design and fatigue performance of large utility-scale wind turbine blades,” J. Solar Energy Eng., 135, No. 3, 031019-031019-11 (2013).

  31. N. Kelley and B. Jonkman, NWTC Computer-Aided Engineering Tools (TurbSim), URL http://wind.nrel.gov/design-codes/preprocessors/turbsim (2013).

  32. P. J. Moriarty and A. C. Hansen, AeroDyn Theory Manual, National Renewable Energy Laboratory, USA, Technical Report No. NREL/EL-500-36881 (2005).

  33. J. M. Jonkman and M. L. Buhl Jr, FAST User’s Guide, National Renewable Energy Laboratory, USA, Technical Report No. NREL/EL-500-38230 (2005).

Download references

Acknowledgement

This work was funded by the Higher Education Commission of Pakistan and Hanyang University, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hayat.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 4, pp. 697-714, July-August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, K., Ha, S.K., Sultan, T. et al. Fatigue Life of Megawatt-Scale Composite Wind Turbine Blades with Shallow-Angled Laminates. Mech Compos Mater 55, 483–494 (2019). https://doi.org/10.1007/s11029-019-09827-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09827-8

Keywords

Navigation