Skip to main content
Log in

Studying the Viscoelastic Properties of an Epoxy Resin Strengthened with Silicon Dioxide Nanoparticles by Instrumented Microindentation

  • Published:
Mechanics of Composite Materials Aims and scope

The viscoelastic properties of surface layers of a Primer-204 epoxy resin modified by silicon dioxide nanoparticles with weight fractions of 0.24, 0.41, 0.65, and 2% were investigated. Material specimens were indented using a Hysitron TI 950 Triboindenter nanomechanical test system. The load and the loading and holding times had a significant effect on the values of hardness and reduced the elastic modulus obtained by indentation. The material exhibited viscosity at the microscopic level. With filler content growing from 0.24 to 2 wt.%, the reduced elastic modulus and hardness of surface layers of the material increased, but the creep decreased. It is shown that the rheonomic properties of the Primer-204 epoxy resin modified by silicon dioxide nanoparticles should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. E. Manias, “Nanocomposites: stiffer by design,” Nat. Mater., 6, 9-11 (2007).

    Article  Google Scholar 

  2. G. Kickelbick, “Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale,” Prog. Polym. Sci., 28, 83-114 (2003).

    Article  Google Scholar 

  3. D. Pinto, L. Bernardo, A. Amaro, and S. Lopes, “Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement. A review,” Constr. Build. Mater., 95, 506-524 (2015).

    Article  Google Scholar 

  4. A. Allahverdi, M. Ehsani, H. Janpour, and S. Ahmadi, “The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating,” Prog. Org. Coat., 75, 543-548 (2012).

    Article  Google Scholar 

  5. M. Conradi, M. Zorko, A. Kocijan, and I. Verpoest, “Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers,”, Mater. Chem. Phys., 137, 910-915 (2013).

    Article  Google Scholar 

  6. A. Jumahata, C. Soutisb, S. A. Abdullaha, and Salmiah Kasolanga, “Tensile properties of nanosilica/epoxy nanocomposites,” IRIS 2012, Proc. Eng., 41, 1634-1640 (2012).

    Google Scholar 

  7. O. Starkova, S. T. Buschhorn, E. Mannov, K. Schulte, and A. Aniskevich, “Creep and recovery of epoxy/MWCNT nanocomposites,” Composites: Part A, 43, 1212-1218 (2012).

    Article  Google Scholar 

  8. Yu Jia, Ke Peng, Xing-long Gong, and Zhong Zhang, “Creep and recovery of polypropylene/carbon nanotube composites,” Int. J. Plast., No.27, 1239-1251 (2011).

  9. S. H. Aboubakr, U. F. Kandil, and M. Reda Taha, “Creep of epoxy–clay nanocomposite adhesive at the FRP interface: A multi-scale investigation,” Int. J. Adhes. Adhes., 54, 1-12 (2014).

    Article  Google Scholar 

  10. V. E. Panin (ed.), Surface Layers and Internal Interfaces in Heterogeneous Materials, ISPMS SB RAS [in Russian], SB RAS, Novosibirsk (2006).

  11. T. A. Brusentseva, A. A. Filippov, V. M. Fomin, S. V. Smirnov, and I. A. Veretennikova, “Modification of epoxy resin with silica nanoparticles and process engineering of composites based on them,” Mech. Compos. Mater., 51, No.4, 531-538 (2015).

    Article  Google Scholar 

  12. T. A. Borisova, A. A. Filippov, and V. М. Fomin, “Investigation of the elastic characteristics of a material with the presence of a nanodispersed powder in the structure,” Izv. Altai State Univ., 73, No. 1, 20-21 (2012).

    Google Scholar 

  13. S. V. Smirnov, I. A. Veretennikova, E. O. Smirnova, V. М. Fomin, A. А. Filippov, and Т. А. Brusentseva, “Studying epoxy resin reinforced with silica dioxide nanoparticles by microindentation,” Diagn. Resour. Mech. Mater. Struct., No. 1, 24-35 (2017).

  14. S. V. Smirnov, I. A. Veretennikova, T. A. Brusentseva, A. A. Filippov, and V. M. Fomin, “Studying a heterogeneous material based on epoxy oligomer filled with silica by microindentation,”, AIP Conf. Proc., 1785, 040069-1 – 040069-5 (2016)

  15. S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, A.V. Lavrukhin, R. A. Salimov, S. N. Fadeev, and V. V. Cherepkov, “Obtaining nanopowders by evaporation of initial substances on an electron accelerator at atmospheric pressure,” Report. RAS, 409, No.3, 320-323 (2006).

    Google Scholar 

  16. ISO 14577-1:2002 Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method.

  17. A. M. Díez-Pascual, M. A. Gómez-Fatou, F. Ania, and A. Flores, “Nanoindentation in polymer nanocomposites,” Prog. Mater. Sci., 67, 1-94 (2015).

    Article  Google Scholar 

  18. G. L. Oliveira, C. A. Costa, S. C. S. Teixeira, and M. F. Costa, “The use of nano- and micro-instrumented indentation tests to evaluate viscoelastic behavior of poly (vinylidene fluoride) (PVDF),” Polym. Test., 34, 10-16 (2014).

    Article  Google Scholar 

  19. R. Seltzer, Y.-W. Mai, and P. M. Frontini, “Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending,” Composites: Part B, 43, 83-89 (2012).

    Article  Google Scholar 

  20. L. A. Fasce, R. Seltzer, and P. M. Frontini, “Depth sensing indentation of organic–inorganic hybrid coatings deposited onto a polymeric substrate,” Surf. Coat. Technol., 210, 62-70 (2012).

    Article  Google Scholar 

  21. A. H. W. Ngan, H. T. Wang, B. Tang, and K. Y. Sze, “Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation,” Int. J. Solids Struct., 42, 1831-1846 (2005).

    Article  Google Scholar 

  22. S.-F. Chuang, S.-Y. Lin, P.-J. Wei, C.-F. Han, J.-F. Lin, and H.-C. Chang, “Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test,” J. Biomec., 48, Iss.10, 2155-2161 (2015).

    Article  Google Scholar 

  23. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using loaddisplacement sensing indentation experiments,” Matter. Res., 7, Iss.6, 1564-1583 (1992).

    Article  Google Scholar 

  24. Y. U. I. Golovin, Nanoindentation and its Capabilities [in Russian], M., Mashinostroenie, (2009).

  25. M. L. Trunov, V. S. Bilanich, and S. N. Dub, “Nanoindentation study of the time-dependent mechanical behavior of materials,” Tech. Phys., 52, 1298-1305 (2007).

    Article  Google Scholar 

  26. G. Feng and A.H.W. Ngan, “Effects of creep and thermal drift on modulus measurement using depth-sensing indentation,” J. Mater. Res., 17, Iss. 3, 660-668 (2002).

    Article  Google Scholar 

  27. A. H. W. Ngan and B. Tang, “Viscoelastic efIfects during unloading in depth-sensing indentation,” J. Mater. Res., 17, Iss. 10, 2604-2610 (2002).

    Article  Google Scholar 

  28. M. L. Oyen and R. F. Cook, “Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials,” J. Mater. Res., 18, No. 1, 139-150 (2003).

    Article  Google Scholar 

  29. M. L. Oyen and R. F. Cook, “A practical guide for analysis of nanoindentation data,” J. Mech. Behav. Biomed., 2, Iss. 4, 396-407 (2009).

    Article  Google Scholar 

  30. A. C. Fischer–Cripps, “A simple phenomenological approach to nanoindentation creep,” Mater. Sci. Eng. A., 385, Iss. 1-2, 74-82 (2004).

    Article  Google Scholar 

  31. V. D. Natsik, L. S. Fomenko, and S. V. Lubenets, “Investigation of the creep and glass transition of elastomers by the microindentation method: Epoxy resin and related nanocomposites,” Phys. Solid State, 55, No.5, 1020-1033 (2013).

    Article  Google Scholar 

  32. T. Fudzii and M. Dzako, Fracture Mechanics of Composite Materials [in Russian], M., Mir (1982).

  33. V. I. Kolesnikov, V. V. Bardushkin, A. V. Lapickij, A. P. Sychyov, and V. B. Yakovlev, “Effective elastic characteristics of epoxy-based antifriction composites,” Vest. YUNC RAN, 6, No.1, 5-10 (2010).

    Google Scholar 

  34. M. Arefi, E. M.-R. Bidgoli, R. Dimitri, and F. Tornabene, “Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets,” Aerosp. Sci. Technol., 81, 108-117 (2018)

    Article  Google Scholar 

  35. S. A. Kukushkin and A.V. Osipov, “Anisotropy of solid silicon carbide epitaxy on silicon,” Semiconductors, 47, Iss. 12, 1575-1579 (2013).

    Article  Google Scholar 

  36. R. M. Christensen, Theory of Viscoelasticity [in Russian], M., Mir (1974).

  37. J. Mays, Theory and problems of continuum mechanics [in Russian], Mir, Moscow (1974).

    Google Scholar 

  38. A. Novik and B. Berri, Relaxation Phenomena in Crystals [in Russian], M., Atomizdat (1975).

  39. T. Alfrei and E. F. Garni, Dynamics of Viscoelastic Behavior. Rheology [in Russian], M., I. L., (1962).

  40. J. R. M. Radok, “Viscoelastic stress analysis,” Q. Appl. Math., 15, 198-202 (1957).

    Article  Google Scholar 

  41. E. H. Lee and J. R. M. Radok, “The contact problem for viscoelastic bodies,” J. Appl. Mech., 27, 438-444 (1960).

    Article  Google Scholar 

  42. J. Qin, Y. Huang, K. C. Hwang, J. Song, and G. M. Pharr, “The effect of indenter angle on the microindentation hardness,” Acta Mater., 55, 6127-6132 (2007).

    Article  Google Scholar 

  43. J. M. MacKelvey, Polymer Processing, New York, Wiley (1962).

    Google Scholar 

  44. A. V. Attetkov, S. V. Galkin, and B. C. Zarubin, Optimization Approach: Textbook for University [in Russian], M., Izd-vo MGTU im. N. EH. Baumana (2003).

  45. F. Gill, U. Myurrej, and M. Rajt, Practical Ooptimization [in Russian], M., Mir (1985).

  46. V. P. Gordienko, R.V. Podlesny, and T. G. Sichkar, “Influence of climatic aging on the properties of a filled polyepoxide,” Plastic. masses, No. 6, 14-17 (2008).

  47. V. P. Selyaev, D. R. Nizin, and D. A. Artamonov, “Climatic stability of polymer composite materials based on epoxy binders,” Reg. Architect. and Constr., No.1, 34-42 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Veretennikova.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 55, No. 3, pp. 483-500, May-June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, S.V., Veretennikova, I.A., Fomin, V.M. et al. Studying the Viscoelastic Properties of an Epoxy Resin Strengthened with Silicon Dioxide Nanoparticles by Instrumented Microindentation. Mech Compos Mater 55, 337–348 (2019). https://doi.org/10.1007/s11029-019-09816-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09816-x

Keywords

Navigation