Skip to main content
Log in

Review of Basalt-Fiber-Reinforced Cement-based Composites in China: Their Dynamic Mechanical Properties and Durability

  • Published:
Mechanics of Composite Materials Aims and scope

The research performed in China on cement-based composites reinforced with randomly 3D distributed basalt fibers is analyzed and summarized, and six possible directions of further investigations into this field are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Y. Gong, R. X. Shen, and H. Q. Li, Application of Dura Fiber in Civil Engineering, CM Press, Beijing, PRC (2002).

  2. L. H. Xu, D. T. Xia, G. Z. Xia, and Y. Chi, “Effect of steel fiber and polypropylene fiber on the strength of high strength concrete,” J. Wuhan Univ. Technol., 29, No. 4, 58-60 (2007).

    Google Scholar 

  3. S. L. Xu and H. D. Li, “A review on the development of research and application of ultrahigh toughness cementitious composites,” China Civil. Eng. J., 41, No. 6, 45-60 (2008).

    Google Scholar 

  4. J. Y. Sun, “Frost resistance characteristics of fiber concrete,” J. Building Mater., 16, No. 3, 437-440 (2013).

    Google Scholar 

  5. Z. S. Guo, C. F. Wang, M. Y. Xu, and J. X. Chen, “Review of basalt fiber-reinforced concrete in China: alkali resistance of fibers and static mechanical properties of composites,” Adv. Mater. Sci. Eng., 9198656, 1-11 (2018).

    Google Scholar 

  6. X. Q. Hu, Y. F. Luo, and T. N. Shen, “Basalt continuous fiber and its reinforcing composite material,” Hi-Tech. Fiber Appl., 27, No. 2, 1-11 (2002).

    Google Scholar 

  7. G. J. Wang, D. K. Shang, L. N. Hu, K. L. Zhang, Z. H. Guo, and Y. J. Guo, “Investigation of modification of basalt fibers and preparation of ecocomposites thereof,” Acta Mater. Compos. Sin., 21, No. 1, 38-44 (2004).

    Google Scholar 

  8. L. A. Shi, H.Y. Ma, and Z. D. Rong, ‘Influence of basalt fiber and its geotextile on mechanical performance of ultrahigh performance cement composites,” J. Nanjing Univ. Aeronaut. Astronaut., 44, No. 3, 415-419 (2012).

    Google Scholar 

  9. D. Zhang, Q. Xu, and Y. Guo, “Experiments on strength and shrinkage of expansive soil with basalt fiber reinforcement,” J. Southeast Univ., 42, No. 5, 975-980 (2012).

    Google Scholar 

  10. L. J. OuYang, B. Ding, Z. D. Lu, and J.T. Yu, “Experimental study on seismic performance of short columns strengthened with BFRP and CFRP,” J. Tongji Univ., 41, No. 2, 166-172 (2013).

    Google Scholar 

  11. J. F. Mao, W. G. Dong, and S. Z. Cong, “Characteristics and application prospect of basalt fiber,” Tech. Text, No. 10, 38-40 (2007).

  12. R. Yang and Z. Wang, “Research on physical and mechanical properties of basalt fiber reinforced concrete,” Yangtza River, 46, No. 13, 78-81(2015).

  13. L. Zhao, “The influences of basalt fiber on mechanical properties of cement-based materials,” China Concrete, Cem. Prod., No. 9, 6-48 (2012).

  14. Y. C. Zhang, Q. N. Li, and C. Z. Fang, “Study of the mechanical properties and durability of fiber reinforced concrete based on meso analysis,” Concrete, No. 8, 48-50 (2016).

  15. D. X. Hao, “The progress of basalt fiber and its product technology abroad,” China Building Mater. Sci. Technol., No. 3, 4-85 (1990).

  16. Y. H. Gu, “Alkali resistant mineral fiber,” Fiber Glass, No. 4, 2-42 (1978).

  17. L. Wang, Y. Chen, and Z. W. Li, “Properties of continuous basalt fiber and composites,” Fiber Reinf. Plast. Compos., No. 6, 2-24 (2000).

  18. Y. Chen, L. Wang, and Z. W. Li, “Properties and application of basalt fiber,” New Building Mater., No. 8, 28-31 (2000).

  19. J. Sim, C. Park, and D. Y. Moon, “Characteristics of basalt fiber as a strengthening material for concrete structures,” Composites: Part B, 36, 504-512 (2005).

    Article  Google Scholar 

  20. Y. V. Lipatov, S. I. Gutnikov, and M. S. Manylov, “High alkali-resistant basalt fiber for reinforcing concrete,” Mater. Des., 73, 60-66 (2015).

    Article  Google Scholar 

  21. T. M. Borhan, “Properties of glass concrete reinforced with short basalt fibre,” Mater. Des., 42, 265-271 (2012).

    Article  Google Scholar 

  22. T. M. Borhan and C. G. Bailey, “Structural behaviour of basalt fibre reinforced glass concrete slabs,” Mater. Struct., 47, 77-87 (2014).

    Article  Google Scholar 

  23. T. M. Borhan and C. G. Bailey, “Modelling basalt fibre reinforced glass concrete slabs at ambient and elevated temperatures,” Mater. Struct., 47, 999-1009 (2014).

    Article  Google Scholar 

  24. M. Sinica, G. A. Sezeman, D. Mikulskis, M. Kligys, and V. Česnauskas, “Impact of complex additive consisting of continuous basalt fibres and SiO2 microdust on strength and heat resistance properties of autoclaved aerated concrete,” Constr. Building Mater., 42, 718-726 (2014).

    Article  Google Scholar 

  25. T. Ayub, N. Shafiq, and M. F. Nuruddin, “Effect of chopped basalt fibers on the mechanical properties and microstructure of high performance fiber reinforced concrete,” Adv. Mater. Sci. Eng., ID 587686, 1-14 (2014).

  26. D. Aspronea, E. Cadoni, F. Iucolano, and A. Prota, “Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar,” Cem. Concrete Compos., 53, 52-58 (2014).

    Article  Google Scholar 

  27. N. Kabay, “Abrasion resistance and fracture energy of concretes with basalt fiber,” Constr. Building Mater., 50, 95-101 (2014).

    Article  Google Scholar 

  28. Nanjing Fiberglass Research& Design Institute, “Melt mineral wool slag with containing titania,” Fiber Glass, No. 1, 6-6 (1978).

  29. R. X. Sheng, “Improving durability of glass fiber in cement-base materials,” J. Chin. Ceram. Soc., 6, No. 3, 199-213 (1978).

    Google Scholar 

  30. S. Q. Du, “Prospects for development and applied range of basalt fiber,” Fiber Glass, No. 4, 49-49 (1980).

  31. X. W. Zhao, “Basalt fiber reinforced concrete,” J Water Res Water Eng., No. 3, 75-75 (1990).

  32. X. Q. Hu and S. N. Hu, “The applications of the CBF in war industry & civil fields,” Hi-Tech. Fiber Appl., 30, No. 6, 7-13 (2005).

    Google Scholar 

  33. D. Q.Ye, “Continuous basalt fiber-new materials in twenty-first Century,” Building Mater. Ind. Inf., No. 6, 5-5 (2002).

  34. B. P. Wang and W. Zhang, “Properties and applications of basalt fiber,” Res. Appl. Building Mater., No. 4, 17-18 (2002).

  35. W. M. Li and J. Y. Xu, “Strengthening and toughening in basalt fiber-reinforced concrete,” J. Chin. Ceram. Soc., No. 4, 476-481(2008).

  36. W. M. Li, J. Y. Xu, L. J. Shen, and Q. Li, “Dynamic mechanical properties of basalt fiber reinforced concrete using a split Hopkinson pressure bar,” Acta Mater. Compos. Sin., 25, No. 2, 135-142 (2008).

    Google Scholar 

  37. W. M. Li and J. Y. Xu, “Dynamic behavior and constitutive model of basalt fiber reinforced concrete under impact loading,” Eng. Mech., No. 1, 86-91 (2009).

  38. F. L. Fan, X. H. Ye, J. Y. Xu, W. M. Li, and Y. Chen, “Dynamic constitutive relation of basalt fiber reinforced concrete under impact loading,” J. Vibr. Shock, 29, No. 1, 110-117 (2010).

    Google Scholar 

  39. W. B. Ren, J. Y. Xu, Y. F. Liu, and H. Y. Su “Fractal characteristics of fragments of basalt fiber reinforced concrete after exposure to elevated temperature,” J. Vibr. Shock, 33, No. 10, 167-171 (2014).

    Google Scholar 

  40. W. B. Ren, J. Y. Xu, Z. G. Zhang, and J. Zhu, “Impact deformation properties of basalt fiber reinforced concrete after exposure to elevated temperature,” J. Building Mater., 17, No. 5, 768-773 (2014).

    Google Scholar 

  41. W. B. Ren, J. Y. Xu, E. L. Bai, and J. S. Fan, “Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures,” Expl. Shock Wave, No. 1, 36-42 (2015).

  42. W. B. Ren, J.Y. Xu, and H. Y. Su, “Dynamic compressive behavior of basalt fiber reinforced concrete after exposure to elevated temperatures,” Fire Mater., No. 40, 738-755 (2016).

  43. W. M. Li and J. Y. Xu, “Pulse shaping techniques for large-diameter split Hopkinson pressure bar test,” Acta. Armamentarii, 30, No. 3, 350-355 (2009).

    Google Scholar 

  44. X. Y. Zhang, X. Y. Gu, J. X. Lü, and Z. K. Zhu, “Experiment and simulation of creep performance of basalt fibre asphalt mortar under uniaxial compressive loadings,” J. Southeast Univ., 32, No. 4, 472-478 (2016).

    Google Scholar 

  45. L. Gao, G. H. Hu, Y. H. Chen, Y. J. Hu, and Y. H. Gong, “Triaxial tests clay reinforced by basalt fiber,”Chin. J. Geotech. Eng., 39, Supp.1 198-203 (2017).

    Google Scholar 

  46. Z. X. Li, Damage Mechanics and Its Application, Scicene Press, Beijing, PRC, 14-43 (2002).

  47. Q. X. Zhao, J. Q. Dong, H. M. Pan, and S.W. Hao, “Impact behavior of basalt fiber reinforced concrete,”Acta Mater. Compos. Sin., No. 6, 120-125 (2010).

  48. R. X. Shen, Q. Cui, and Q. H. Li, New Fiber Reinforced Cement-based Composites, CBM Press, Beijing, PRC, 52-117 (2003).

  49. Z. J. Xu, Technology and Application of Fiber Reinforced Concrete, CAB Press, Beijing, PRC, 1-32 (2003).

  50. C. H. Guo, P. J. Zhou, Z. C. Lu, Y. P. Chang, G. P. Zou and F. C. Jing, “Application of pulse shaping technique in Hopkinson bar experiments,” Expl. Shock Wave, 35, No. 6, 881-887 (2015).

    Google Scholar 

  51. R. X. Shen, Z. S. Wang, and Y. Z. Cui, Fiber Reinforced Cement and Fiber Reinforced Concrete, CI Press, Beijing, PRC, 30-59 (2006).

  52. B. X. Wang, C. K. Huang, and H. N. He, “A study on the crack resistance of self-stressing concrete for old bridge rehabilitations,” China Civil Eng. J., 42, No. 2, 86-91 (2009).

    Google Scholar 

  53. D. X. Zhao and J. L. Qu, “Study on impact of steel fiber, basalt fiber and polypropylene fiber on properties of selfcompacting concrete,” J. Water Resour. Water Eng., 27, No. 5, 174-179 (2016).

    Google Scholar 

  54. T. M. Wang, Crack Control of Engineering Structure, CAB Press, Beijing, PRC, 200-330 (1997).

  55. Y. H. Ma, Z. J. Yi, Q. G. Yang, J. Y. Gu, and F. Huang, “Research on type select ion of fiber used in cement concrete on the basis is of the shrinkage and anti-crack property of cement mortar,” Concrete, No. 2, 102-105 (2008).

  56. R. Li, Z. Bi, Y. Wang, and H. Y. Liu, “Experimental study on mechanical properties of short basalt fiber reinforced self-compacting concrete,” China Concrete Cem. Prod., No. 2, 48-50 (2008).

  57. J. Y. He, X. Q. Huang, and C. Y. Tian, “Experimental study on strengthening and crack resistance of basalt fiber,” China Concrete Cem. Prod., No. 3, 36-39 (2011).

  58. Y. Li, C. Zhang, and X. Cong, “Experimental study on crack resistance of fiber mortar using knife-edge binding method,” Concrete, 270, No. 4, 100-102 (2012).

    Google Scholar 

  59. H. L. Chang, Z. Q. Jin, and Y. W. Li, “Study on early age crack resistance property of fiber reinforced concrete,” China Concrete Cem. Prod., No. 2, 44-46 (2013).

  60. W. Chen, J. Wang, K. Zhang, J. Chen, G. J. Liu, and Z. Y. Zhu, “Anti-crack performance of reinforced concrete beams strengthened by basalt fiber,” J. Mater. Sci. Eng., 35, No. 1, 144-148 (2017).

    Article  Google Scholar 

  61. SL352-2006, Test Code for Hydraulic Concrete, Ministry of Water Resources of the PRC, Beijing (2006).

  62. G. W. Li, “Application of basalt fiber in the hydraulic erosion-wear high performance concrete,” Concrete, No. 11, 77-79 (2008).

  63. G. D. Jv, Y. Shi, and J. Z. Li, “Comparative study on influence of different fibers to performance of abrasion resistant concrete,” China Concrete Cem. Prod., 41, No. 21, 21-23 (2010).

    Google Scholar 

  64. T. E. Hong and H. Y. Wang, “Hydraulic concrete abrasion test method (underwater steel ball method) of improving research,” China Rural Water Hydropower, No. 4, 126-128 (2014).

  65. Z. Q. Du and W. Sun, “Effect of fibers and air-entraining agent on the impermeability of modern cement-based materials,” J. Southeast Univ., 40, No. 3, 614-618 (2010).

    Google Scholar 

  66. J. Y. He and C. Y. Tian, “Durability study of basalt fiber reinforced hydraulic concrete,” China Concrete Cem. Prod., No. 5, 46-48 (2013).

  67. S. J. Jin, Z. L. Li, and J. Zhang, “Experimental study on anti-freezing and thawing performance of reinforced concrete of basalt fiber under corrosion condition,” Eng. Mech., 32, 5, 178-183 (2015).

    Google Scholar 

  68. W. M. He, X. G. Zhang, and C. Wang, “Monitoring and measurement of core temperature of mass concrete,” Mater. Rev., 27, No. 4, 124-126 (2013).

    Google Scholar 

  69. G. R. Ye, Y. W. Yan, and H. L. Cao, “Basalt fiber modified with graphene oxide and properties of its reinforced epoxy composites,” Acta Mater. Compos. Sin., 31, No. 6, 1402-1408 (2014).

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China (Grant 2017YFC0703705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. X. Chen.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 1, pp. 155-172, January-February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z.S., Hao, N., Wang, L.M. et al. Review of Basalt-Fiber-Reinforced Cement-based Composites in China: Their Dynamic Mechanical Properties and Durability. Mech Compos Mater 55, 107–120 (2019). https://doi.org/10.1007/s11029-019-09796-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09796-y

Keywords

Navigation