Skip to main content
Log in

Predicting the Elastic Properties of 3D N-Directional Braided Composites Via a Theoretical Method

  • Published:
Mechanics of Composite Materials Aims and scope

The microstructure of 3D n-directional braided composites is established in this study. A theoretical method that considers 3D braided composites as assemblages of unidirectional composites is proposed to predict their elastic properties. A comparison of the predicted stiffness with experimental results showed their good agreement. The relationship between braiding parameters, including the braiding angle and fiber volume fraction, and the elastic constants is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. B. Sun, R. Liu, and B. Gu, “Numerical simulation of three-point bending fatigue of four-step 3-D braided rectangular composite under different stress levels from unit-cell approach,” Comp. Mater. Sci., 65, 239-246 (2012).

    Article  Google Scholar 

  2. X. Chen and Z. Li, “Analysis of the dynamic response of 3D-braided rectangular plates on an elastic foundation,” Mech. Compos. Mater., 44, 607-622 (2008).

    Article  Google Scholar 

  3. X. Wu, J. Li, and R. Shenoi, “Measurement of braided preform permeability,” Compos. Sci. Technol., 66, 3064-3069 (2006).

    Article  Google Scholar 

  4. F. Ko and C. Pastore, “Structure and properties of an integrated 3-D fabric for structural composites,” Recent Advances in Composites in the United States and Japan, ASTM STP 864, J. R. Vinson and M. Taya, Eds., American Society for Testing and Materials, Philadelphia, 1985, pp. 428-439.

    Chapter  Google Scholar 

  5. Y. Wang and A. Wang, “Microstructure/property relationships in three-dimensionally braided fiber composites,” Compos. Sci. Technol., 53, 213-222 (1995).

    Article  Google Scholar 

  6. J. Ya, Z. Liu, and Y. Wang, “Micro-CT characterization on the meso-structure of three-dimensional full five-directional braided composite,” Appl. Compos. Mater., 24, 593-610 (2017).

    Article  Google Scholar 

  7. Z. Quan, Z. Larimore, X. Qin, J. Yu, M. Mirotznik, J. Byun, Y. Oh, and T. Chou, “Microstructural characterization of additively manufactured multi-directional preforms and composites via X-ray micro-computed tomography,” Compos. Sci. Technol., 131, 48-60 (2016).

    Article  Google Scholar 

  8. J. Yang, C. Ma, and T. Chou, “Fiber inclination model of three-dimensional textile structural composites,” J. Compos. Mater., 20, 472-484 (1986).

    Article  Google Scholar 

  9. C. Ma, J. Yang, and T. Chou, “Elastic stiffness of three-dimensional braided textile structural composites,” Composite Materials: Testing and Design (Seventh Conference), ASTM STP 893. J. M. Whitney, Ed., American Society for Testing and Materials, Philadelphia, 1986, pp. 404-421.

    Chapter  Google Scholar 

  10. D. Wu, “Three-cell model and 5D braided structural composites,” Compos. Sci. Technol., 56, 225-233 (1996).

    Article  Google Scholar 

  11. S. R. Kalidindi and E. Franco, “Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites,” Compos. Sci. Technol., 57, 293-305 (1997).

    Article  Google Scholar 

  12. L. Chen, X. Tao, and C. Choy, “Mechanical analysis of 3-D braided composites by the finite multiphase element method,” Compos. Sci. Technol., 59, 2383-2391 (1999).

    Article  Google Scholar 

  13. D. Li, Z. Lu, L. Chen, L., and J. Li, “Microstructure and mechanical properties of three-dimensional five-directional braided composites,” Int. J. Solids Struct., 46, 3422-3432 (2009).

  14. D. Li, D. Fang, N. Jiang, and X. Yao, “Finite element modeling of mechanical properties of 3D five-directional rectangular braided composites,” Composites: Part B., 42, 1373-1385 (2011).

    Article  Google Scholar 

  15. M. Shokrieh and M. Mazloomi, “A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites,” Compos. Struct., 94, 1005-1015 (2012).

    Article  Google Scholar 

  16. G. Fang, J. Liang, B. Wang, and Y. Wang, “Effect of interface properties on mechanical behavior of 3D four-directional braided composites with large braid angle subjected to uniaxial tension,” Appl. Compos. Mater., 18, 449-465 (2011).

    Article  Google Scholar 

  17. S. Tsai and H. Hahn, Introduction to composite materials, Lancaster: Technomic Publishing Co. (1980).

    Google Scholar 

  18. C. Chamis, “Simplified composite micromechanics equations for hygral, thermal and mechanical properties,” SAMPE Quarterly, 15, 41-55 (1984).

    Google Scholar 

  19. C. Chamis, “Mechanics of composite materials: past, present and future,” J. Compos. Technol. Res. ASTM, 11, 3-14 (1984).

    Google Scholar 

  20. R. Hill, “Theory of mechanical properties of fiber-strengthened materials,” J. Math. Phys., 12, 199-212 (1964).

    Google Scholar 

  21. Z. Hashin and B. Rosen, “The elastic moduli of fiber-reinforced materials”, J. Appl. Mech., 31, 223-232 (1964).

    Article  Google Scholar 

  22. R. Christensen and H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids, 27, 315-330 (1979).

    Article  Google Scholar 

  23. Z. Huang, “A unified micromechanical model for the mechanical properties of two constituent composite materials, Part I: Elastic behavior,” J. Thermoplast. Compos., 13, 252-271 (2000).

    Article  Google Scholar 

  24. Z. Huang, “A unified micromechanical model for the mechanical properties of two constituent composite materials, Part II: Plastic behavior,” J. Thermoplast. Compos., 13, 344-362 (2000).

    Article  Google Scholar 

  25. Z. Huang, “A unified micromechanical model for the mechanical properties of two constituent composite materials, Part III: Strength behavior,” J. Thermoplast. Compos., 14, 54-69 (2001).

    Article  Google Scholar 

  26. Z. Huang, “Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites,” Int. J. Solids Struct., 38, 4147-4172 (2001).

    Article  Google Scholar 

  27. Z. Huang, “Simulation of the mechanical properties of fibrous composites by bridging micromechanics model,” Composites: Part A., 32, 143-172 (2001).

    Article  Google Scholar 

  28. K. Xu and X. Qian, “A new analytical model on predicting the elastic properties of 3D full five-directional braided composites based on a multiunit cell model,” Composites: Part B., 83, 242-252 (2015).

    Article  Google Scholar 

  29. Z. Tian, Y. Yan, H. Luo, and Y. Hong, “Parameterized unit-cell models for stiffness performance analyses of threedimensional n-directional braided composites,” J. Reinf. Plast. Compos., 35, 1371-1386 (2016).

    Article  Google Scholar 

  30. K. Xu, X. Xu, and H. Wang, “Experimental investigation of the mechanical properties of 3D 6-directional composites,” Acta Mater. Compos. Sin., 22, 145-149 (2005) (in Chinese).

    Google Scholar 

  31. D. Zhang, X. Zhen, Y. Sun, and X. Fan, “Comparative investigation of mechanical properties between 3D braided and laminated composites,” J. Aeron. Mater., 35, 89-96 (2015) (in Chinese).

    Google Scholar 

  32. S. R. Kalidindi and A. Abusafieh, “Longitudinal and transverse moduli and strengths of low angle 3-D braided composites,” J. Compos. Mater., 30, 885-905 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hong.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 1, pp. 137-154, January-February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Yan, Y., Guo, F. et al. Predicting the Elastic Properties of 3D N-Directional Braided Composites Via a Theoretical Method. Mech Compos Mater 55, 95–106 (2019). https://doi.org/10.1007/s11029-019-09795-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09795-z

Keywords

Navigation