Skip to main content
Log in

Modeling a Composite Reinforced with Short Alfa Fibers to Determine its Fatigue and Structural Homogenization

  • Published:
Mechanics of Composite Materials Aims and scope

The fatigue and homogenization of polypropylene reinforced with untreated and chemically treated short Alfa fibers were investigated using a modified Mori–Tanaka model. The polypropylene with chemically treated fibers showed a higher resistance than that with untreated ones. Cylindrical fibers with elliptical cross sections were used in experiments. Their mechanical characteristics were determined by the inverse method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. A. N. Towo and M. P. Ansell, “Fatigue evaluation and dynamic mechanical thermal analysis of sisal fiber–thermosetting resin composites,” Compos. Sci. Technol., 68, 925-932 (2008).

    Article  CAS  Google Scholar 

  2. A. N. Towo and M. P. Ansell, “Fatigue of sisal fiber reinforced composites: Constant-life diagrams and hysteresis loop capture,” Compos. Sci. Technol., 68, 915-924 (2008).

    Article  CAS  Google Scholar 

  3. F. A. Silva, B. Mobasher, and R. D. T. Filho, “Fatigue behavior of sisal fiber reinforced cement composites,” Mater. Sci. Eng. A, 527, No. 21-22, 5507-5513 (2010).

    Article  Google Scholar 

  4. A. Elouaer, Z. Aboura, R. Ayad, H. Sabhi, M. L. Benzeggagh, Suivi de l’endommagement en fatigue des composites à base de fibres végétales, Comptes Rendus des JNC 16, Toulouse (2009).

  5. P. N. B. Reis, J. A. M. Ferreira, F. V. Antunes, and J. D. M. Costa, “Flexural behaviour of hybrid laminated composites,” Composites: Part A, 38, No. 6, 1612-1620 (2007).

    Article  Google Scholar 

  6. M. M. Thwe and K. Liao, “Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites,” Compos. Sci. Technol., 63, No. 3-4, 375-387 (2003).

    Article  CAS  Google Scholar 

  7. J. M. Ferreira, H. Silva, J. D. Costa, and M. Richardson, “Stress analysis of lap joints involving natural fiber reinforced interface layers,” Composites: Part B, 36, No. 1–7, (2003).

    Article  Google Scholar 

  8. J. A. Gassan, “Study of fiber and interface parameters affecting the fatigue behaviour of natural fiber composites,” Composites: Part A, 33, No. 3, 369-374 (2002).

    Article  Google Scholar 

  9. I. Miraoui and H. Hassis, “Mechanical model for vegetal fibers-reinforced composite materials,” Physics Procedia, 25, 130-136 (2012).

    Article  Google Scholar 

  10. M. S. Ferreira, M. N. Sartori, R. R. Oliveira, G. E. Olgun, and A. B.Moura, “Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties,” Appl. Surface Sci., 310, 325-330 (2014).

    Article  CAS  Google Scholar 

  11. A. Fotouh, J. D. Wolodko, and M. G. Lipset, “Fatigue of natural fiber thermoplastic composites,” Composites: Part B: Eng., 62, 175-182 (2014).

    Article  CAS  Google Scholar 

  12. D. V. O. Moraes, R. Magnabosco, G. H. B. Donato, S. H. P. Bettini, and M. C. Antunes, “Influence of loading frequency on the fatigue behaviour of coir fiber reinforced PP composite,” Polymer Testing, 41, 184-190 (2015).

    Article  Google Scholar 

  13. E. Ghossein and M. Lévesque, “A comprehensive validation of analytical homogenization models: The case of ellipsoidal particles reinforced composites,” Mech. of Mater.,75, 135-150 (2014).

    Article  Google Scholar 

  14. D. Notta-Cuvier, F. Lauro, B. Bennani, and R. Balieu, “An efficient modelling of inelastic composites with misaligned short fibers,” Int. J. Solids and Structures, 50, 2857-2871 (2013).

    Article  CAS  Google Scholar 

  15. R. Piat, I. Tsukrov, N. Mladenov, M. Guellali, R. Ermel, T. Beck, E. Schnack, and M. J. Hoffmann, “Material modeling of the CVI-infiltrated carbon felt II Statistical study of the microstructure, numerical analysis and experimental,” Compos. Sci. Technol., 66, 2769-2775 (2006).

    Article  CAS  Google Scholar 

  16. H. Ma and G. Hu, “Influence of fiber’s shape and size on overall,” Int. J. of Solids and Structures, 43, 3025-3043 (2006).

    Article  Google Scholar 

  17. B. Sobhani Aragh, A. H. N. Barati, and H. Hedayati, “Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels,” Composites: Part B, 43, 1943-1954 (2012).

    Article  CAS  Google Scholar 

  18. M. J. John and R. D. Anandjiwala, “Chemical modification of flax reinforced polypropylene composites,” Composites: Part A, 40, 442-448 (2009).

    Article  Google Scholar 

  19. A. Bessadok, S. Roudesli, S. Marais, N. Follain, and L. Lebrun, “Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties,” Composites: Part A, 40, 184-95 (2009).

    Article  Google Scholar 

  20. S. Alix, L. Lebrun, C. Morvan, and S. Marais, “Study of water behaviour of chemically treated flax fibres-based composites: A way to approach the hydric interface,”. Compos. Sci. Technol., 71, 893-899 (2011).

    Article  CAS  Google Scholar 

  21. F. Z. Arrakhiz, M. Elachaby, R. Bouhfid, S. Vaudreuil, M. Essassi, and A. Qaiss, “Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment,” Mater. Des., 35, 318-322 (2012).

    Article  CAS  Google Scholar 

  22. F. Z. Arrakhiz, M. Malha, R. Bouhfid, K. Benmoussa, and A. Qaiss. “Tensile, flexural and torsional properties of chemically treated Alfa, coir and bagasse reinforced polypropylene,” Composites: Part B, 47, 35-41 (2013).

    Article  CAS  Google Scholar 

  23. H. Mechakra, A. Nour, S. Lecheb, and A. Chellil, “Mechanical characterizations of composite material with short Alfa fibers reinforcement,” Compos. Struct., 124, 152-162 (2015).

    Article  Google Scholar 

  24. W. Van Paepegem and J. Degrieck, “A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites.” Int. J. Fatigue, 24, 747-762 (2002).

    Article  Google Scholar 

  25. S. Ben Brahim and R. Ben Cheikh, “Influence of fiber orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite,” Compos. Sci. Technol., 67, 140-147 (2007).

    Article  CAS  Google Scholar 

  26. L. Charles, Tucker III, and E. Liang, “Stiffness predictions for unidirectional short-fiber composites: Review and evaluation,” Compos. Sci. Technol., 59, 655-671 (1999).

    Article  Google Scholar 

  27. F. Meraghni, F. Desrumaux, and M. L. Benzeggagh, “Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures,” Compos. Sci. Technol., 62, No.16, 2087-2097 (2002).

    Article  CAS  Google Scholar 

  28. G. M. Odegard, T. S. Gates, K. E. Wise, C. Park, and E. J. Siochi, “Constitutive modeling of nanotube–reinforced polymer composites,” Compos. Sci. Technol., 63, No. 11, 1671-1687 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nour.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 54, No. 4, pp. 709-724, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nour, A., Mechakra, H., Benkoussas, B. et al. Modeling a Composite Reinforced with Short Alfa Fibers to Determine its Fatigue and Structural Homogenization. Mech Compos Mater 54, 487–498 (2018). https://doi.org/10.1007/s11029-018-9758-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9758-0

Keywords

Navigation