Skip to main content
Log in

Rheological and Mechanical Properties of Silica-Based Bagasse-Fiber-Ash-Reinforced Recycled HDPE Composites

  • Published:
Mechanics of Composite Materials Aims and scope

An Erratum to this article was published on 08 November 2016

The rheological and mechanical properties of a recycled high-density polyethylene biocomposite with silicabased bagasse fiber ash as a reinforcing filler were investigated. The bagasse fiber ash (BFA) was surface-treated using a silane coupling agent (vinyltrimethoxysilane). Composites with BFA whose particle size was varied in the range of 3 to 25wt.% (37, 53, and 105mm), were prepared and examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. J. Da Silva, T. H. Panzera, V. R. Velloso, and A. L. Christoforo, “Hybrid polymeric composites reinforced with sisal fibres and silica microparticles,” Compos. Part B, 43, No.8, 3436-3444 (2012).

  2. T. P. Sathishkumar, P. Navaneethakrishnan, and S. Shankar, “Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites,” Compos. Sci. Technol., 72, No.10, 1183-1190 (2012).

  3. D. R. Mulinari, H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. Da Silva, and S. M. Luz, “Preparation and properties of HDPE/Sugarcane bagasse cellulose composites obtained for thermokinetic mixer,” Carbohydrate Polym., 75, No.2, 317-321 (2009).

  4. F. Yao, Q. Wu, Y. Lei, and Xu Y, “Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading,” Ind. Crop. Prod. 28, No. 1, 63-72 (2008).

  5. Office of cane and sugar board. Report on total cane crushing and sugar production 2012/2013, Thailand: Ministry of Industry (2013).

  6. G. Sua-iam and N. Makul, “Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste,” J. Clean Prod., 57, 308-319 (2013).

    Article  Google Scholar 

  7. H.Y. Kordkheili, S. Hiziroglu, and M. Farsi, “Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber,” Mater. Des., 33, 395-398 (2012).

    Article  Google Scholar 

  8. D. R. Mulinari, H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. Da Silva, T. G. Da Cruz, and C. Saron, “Sugarcane bagasse cellulose/HDPE composites obtained by extrusion,” Compos. Sci. Technol., 69, No.2, 214-219 (2009).

  9. J. O. Agunsoye and V.S. Aigbodion, “Bagasse-filled recycled polyethylene biocomposites: Morphological and mechanical properties study,” Results in Phys., 3, 187-194 (2013).

    Article  Google Scholar 

  10. V. S. Aigbodion, S. B. Hassan, and J.O. Agunsoye, “Effect of bagasse ash reinforcement on the dry sliding wear behavior of polymer,” Mater. Des., 33, 322-327 (2012).

    Article  Google Scholar 

  11. S. Kanking, P. Niltui, E. Wimolmala, and N. Sombatsompop, “Use of bagasse fiber ash as a secondary filler in silica- or carbon black-filled natural rubber,” Mater. Des., 41, 74-78 (2012).

    Article  Google Scholar 

  12. S. A. Hashemi, H. Arabi, and N. Mirzaeyan, “Surface modification of bagasse fibers by silane coupling agents through microwave oven and its effects on the physical, mechanical, and rheological properties of PP bagasse fiber composites,” Polym. Compos., 28, No. 6, 713–721 (2007).

  13. A. Moubarik, “Rheology study of sugar cane bagasse lignin-added phenol–formaldehyde adhesives,” J. Adhesion., 91, No. 5, 347-355 (2015).

    Article  Google Scholar 

  14. R. Dangtungee and P. Supaphol, “Melt rheology and extrudate swell of sodium chloride-filled low-density polyethylene: Effects of content and size of salt particles,” Polym. Test., 29, No. 2, 188-195 (2010).

    Article  Google Scholar 

  15. N. Muksing, M. Nithitanakul and B. P. Grady, and R. Magaraphan, “Melt rheology and extrusion swell of organobentonite-filled polypropylene nanocomposites,” Polym. Test., 27, No. 4, 470-479 (2008).

  16. J. Z. Liang, “Melt rheology of nanometre-calcium-carbonate-filled acrylonitrile-butadiene-styrene (ABS) copolymer composites during capillary extrusion,” Polym. Int., 51, 1473-1478 (2002).

    Article  Google Scholar 

  17. W. Sitticharoen, N-T. Intawong, and N. Sombatsompop, “An experimental apparatus for measurement of elongational flow properties for LDPE melt and the effect of testing conditions,” Polym. Polym. Compos., 18, No. 7, 359-368 (2010).

    Google Scholar 

  18. S. M. Tamboli, S.T. Mhaske and D. D. Kale, “Crosslinked polyethylene,” India. Chem. Technol., 11, 853-864 (2004).

    Google Scholar 

  19. W. Harnnarongchai, N-T. Intawong, and N. Sombatsompop, “Effects of roller speed, temperature, volumetric flow rate and multiple extrusions on mechanical strength of molten and solidified LDPE under tensile deformation,” J. Macro. Sci. Part B. Phys, 50, No. 6, 1074-1086 (2011).

    Article  Google Scholar 

  20. M. Abdelmouleh, S. Boufi, M. N. Belgacem and A. Dufresne, “Short natural-fibre-reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibre loading,” Compos. Sci. Technol., 67, 1627-1639 (2007).

    Article  Google Scholar 

  21. T. Chaowasakoo and N. Sombatsompop, “Mechanical and morphological properties of fly ash/epoxy composites using conventional thermal and microwave curing methods,” Compos. Sci. Technol., 67, No. 11-12, 2282-2291 (2007).

  22. J.Douce, J. P. Boilot, J. Biteau, L. Scodellaro, and A. Jimenez, “Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coatings,” Thin Solid Films, 466, 114-122 (2004).

  23. E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, and J. Varlet, “Nanofillers in a polymeric matrix: a study on silica-reinforced PA6,” Polymer, 42, 8759-8768 (2001).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Rajamangala University of Technology Lanna for partial support. Special thanks also go to Kaset Thai International Sugar Corp Co., Ltd. (Nakhonsawan, Thailand) and Thai Polyethylene Co., Ltd. (Bangkok, Thailand) for kindly providing the raw materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Sitticharoen.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 52, No. 3, pp. 591-606, May-June, 2016.

An erratum to this article is available at http://dx.doi.org/10.1007/s11029-016-9620-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitticharoen, W., Chainawakul, A., Sangkas, T. et al. Rheological and Mechanical Properties of Silica-Based Bagasse-Fiber-Ash-Reinforced Recycled HDPE Composites. Mech Compos Mater 52, 421–432 (2016). https://doi.org/10.1007/s11029-016-9594-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-016-9594-z

Keywords

Navigation