Mechanics of Composite Materials

, Volume 51, Issue 3, pp 301–312 | Cite as

Fracture Assessment of Strengthened Cracked Metallic Components Using FRP Stiffeners

  • W. K. Ahmed
  • A.-H. I. Mourad

The present study focuses on applying the fracture mechanics approach to the fracture assessment of a cracked member/component strengthened with fiber-reinforced polymer composite stiffeners. The parameters of linear elastic fracture mechanics (LEFM) — the stress intensity factor and the crack opening displacement — are estimated using a finite-element analysis. A metallic plate with an edge crack repaired with fiber-reinforced polymer composite stiffeners is considered in the study. The effects of crack length, debonding length, and adhesive stiffness on the LEFM parameters are examined. Two different loading conditions are considered — axial tension and bending. The results obtained show that fiber-reinforced polymer composite stiffeners are very useful in repairing cracked metallic components.


crack opening displacement fiber-reinforced polymer repair stiffener stress intensity factor 


  1. 1.
    A.-H. I. Mourad and S. K. Maiti, “Mode II stable crack growth,” Fatigue and Fract. of Eng. Mat. and Struct., 19, 75-8 (1996).CrossRefGoogle Scholar
  2. 2.
    A.-H. I. Mourad and S. K. Maiti, “Mode I and mixed mode stable crack extensions through stiffened TPB specimens,” Fatigue and Fract. of Eng. Mat. and Struct., 18, 648-652 (1995).CrossRefGoogle Scholar
  3. 3.
    S. K. Maiti and A.-H. I. Mourad, “Criterion for mixed mode stable crack growth. Part I. Three point bend geometry,” Eng. Fract. Mech., 52, 321-347 (1995).CrossRefGoogle Scholar
  4. 4.
    S. K. Maiti and A.-H. I. Mourad, “Criterion for mixed mode stable crack growth. Part II. Compact tension geometry with and without stiffener,” Eng. Fract. Mech., 52, 349-378 (1995).CrossRefGoogle Scholar
  5. 5.
    A-H. I. Mourad and S. K. Maiti, “Influence of state of stress on mixed mode stable crack growth through D16AT aluminium alloy,” Int. J. Fracture, 72, 241-258 (1995)CrossRefGoogle Scholar
  6. 6.
    A-H. I. Mourad, M. G. Alghafri, O. A. Abu Zeid, and S. K. Maiti, “Experimental investigation on ductile stable crack growth emanating from wire-cut notch in AISI 4340 steel,” Nucl. Eng. and Des., 235, 637-647 (2005)CrossRefGoogle Scholar
  7. 7.
    A-H. I. Mourad, M. G. Alghafri, and O. A. Abu Zeid, “Stable crack extension through AISI 4340 steel: Experimental investigation,” Key Eng. Mat., 261, 207-212 (2004).Google Scholar
  8. 8.
    A-H. I. Mourad, “Effect of stress state on mode II stable crack extension,” Key Eng. Mat., 297, 1604-1610 (2005).Google Scholar
  9. 9.
    A-H. I. Mourad, “Pure shear stable crack growth through compact –tension –shear specimen in plane state of stress,” Strength, Fracture and Complexity: Int. J., 2, 111-125 (2004).Google Scholar
  10. 10.
    J. M. C. Cadei, T. J. Stratford, L. C. Hollaway, and W. J. Duckett, “Strengthening metallic structures using externally bonded fiber-reinforced composites,” CIRIA C595 Technical Report (2004).Google Scholar
  11. 11.
    M. Tavakkolizadeh and H. Saadatmanesh, “Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch,” J. Struct. Eng. ASCE, 129, 186-96 (2003).CrossRefGoogle Scholar
  12. 12.
    E. S. Aggelopoulos, T. D. Righiniotis, and M. K. Chryssanthopoulos, “Debonding of adhesively bonded composite patch repairs of cracked steel members,” Composites: Part B, 42, 1262-1270 (2011).CrossRefGoogle Scholar
  13. 13.
    J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Advanced Applied Mechanics, 29, 63-191 (1992).CrossRefGoogle Scholar
  14. 14.
    R. Krueger, “The virtual crack closure technique: history, approach and applications,” NASA/CR-2002-211628 Technical Report (2002).Google Scholar
  15. 15.
    S. C. Pradhan, N. G. R. Iyengar, and N. N. Kishore, “Finite element analysis of crack growth in adhesively bonded joints,” Int. J. Adhes. Adhes., 15, 33-41 (1995).CrossRefGoogle Scholar
  16. 16.
    C. Au and O. Buyukozturk, “Debonding of FRP plated concrete: A tri-layer fracture treatment,” Eng. Fract. Mech., 73, 348-365 (2006).CrossRefGoogle Scholar
  17. 17.
    P. Colombi, A. Bassetti, and A. Nussbaumer, ‘Delamination effects on cracked steel members reinforced by prestressed composite patch,” Theor. Appl. Fract. Mech., 39, 61-71 (2003).CrossRefGoogle Scholar
  18. 18.
    P. Colombi, “Reinforcement delamination of metallic beams strengthened by FRP strips: Fracture mechanics based approach,” Eng. Fract. Mech, 73, 1980-95 (2006).CrossRefGoogle Scholar
  19. 19.
    B. Taljsten , C. S. Hansen, and J. W. Schmidt, “Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates,” Construction and Build. Matererial, 23, 1665-77 (2009).Google Scholar
  20. 20.
    M. Bocciarelli, P. Colombi, G. Fava, and C. Poggi, “Prediction of debonding strength of tensile steel/CFRP joints using fracture mechanics and stress based criteria,” Eng. Fract. Mech. 76, 299-313 (2009).CrossRefGoogle Scholar
  21. 21.
    E. S. Aggelopoulos, T .D. Righiniotis, and M. K. Chryssanthopoulos, “Parametric evaluation of CFRP patch effectiveness in fatigue repair,” Proc. of 3rd Int. Conf. on bridge maintenance, safety, management, life-cycle performance and cost, IABMAS. Porto, Portugal (2006).Google Scholar
  22. 22.
    W. K. Ahmed and A-H. I. Mourad, “Using fiber reinforced polymer to restore deteriorated structural members,” Int. J. Mat. Mech. Eng., 1, 1-7 (2012).Google Scholar
  23. 23.
    W. N. Al-Rifaie and W. Kh. Ahmed, “Parametric study on the effect of the fiber reinforced polymer (FRP) pad on the stress intensity factor of a cracked pipe,” Eng. and Technol. J., 25, 9-24 (2007).Google Scholar
  24. 24.
    W. K. Ahmed and W. N. Al-Rifaie, “Structural assessment via FEA of bonded steel structures using fiber reinforced epoxy adhesive,” Int. J. of Mat. Mech. Eng., 1, 61-65 (2012).Google Scholar
  25. 25.
    W. K. Ahmed and A-H. I. Mourad, “LEFM based approach to evaluate the impact of debonding problems in rehabilitated steel members using FRP composites,” IV ECCOMAS Thematic Conf. on the Mechanical Response of Composites, University of the Azores at Ponta Delgada, S. Miguel Island, Azores, Portugal (2013).Google Scholar
  26. 26.
    W. K. Ahmed, A-H. I. Mourad, and Wail N. Al-Rifaie, “Characterization of stiffened circumferentially cracked pipe with fiber reinforced polymer composite patch,” Article first publ. online: 9 Sep 2013, DOI:  10.5185/amlett.2013.7505 Advanced Materials Letters ISSN 0976-3961.
  27. 27.
    W. K. Ahmed and A-H. I. Mourad, “Strengthening of misaligned welded pipes with outer circumferentially crack using FRP bandage,” J. Mech. Eng. and Technol., 1, No. 2, 66-73 (2013).CrossRefGoogle Scholar
  28. 28.
    A. A. Baker, Crack Patching: Bonded Repair of Aircraft Structure, Martinus Nijhoff, Dordrecht, The Netherlands, 1988 (Chapter 6: Experimental studies, practical application).Google Scholar
  29. 29.
    A. A. Baker, “Fatigue crack propagation studies on aluminum panels patched with boron/epoxy composite,” Int. Conf. on Aircraft Damage Assessment and Repair, Melbourne, Australia (1991), pp. 209-15.Google Scholar
  30. 30.
    A. A. Baker, “Bonded composite repair of fatigue-cracked primary aircraft structure,” Compos. Struct. 7 (1999) 421-443.Google Scholar
  31. 31.
    R. Jones and J. Callinan, “Finite element analysis of patched cracks,” J. Struct. Mech., 7, 107-130 (1979).CrossRefGoogle Scholar
  32. 32.
    R. Jones and W. K. Chui, “Composite repairs to cracks in thick metallic components,”, Compos. Struct., 4, No.1, 17-29 (1999)CrossRefGoogle Scholar
  33. 33.
    R. Jones, J. Callinan, and K. C. Aggarwal, “Analysis of bonded repair to damaged fiber composite structures,” Eng. Fract. Mech., 17, 37-46 (1983).CrossRefGoogle Scholar
  34. 34.
    C. T. Sun, J. Klug, and C. Arendt, “Analysis of cracked aluminum plates repaired with bonded composite patches,” AIAA J., 34, No.2, 369-374 (1996)CrossRefGoogle Scholar
  35. 35.
    S. Benyoucef, A. Tounsi, R. Yeghnem, M. Bachir Bouiadjra, and E. A. Adda Bedia, “An analysis of interfacial stresses in steel beams bonded with a thin composite plate under thermomechanical loading,” Mech. Compos. Mater., 49, No. 6, 641-650 (2014).CrossRefGoogle Scholar
  36. 36.
    G. Sas, A. Carolin, and B. Täljsten, “A model for predicting the shear bearing capacity of FRP-strengthened beams,” Mech. Compos. Mater., 44, No. 3, 245-256, (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.United Arab Emirates UniversityCollege of Engineering, ERUAl AinUAE
  2. 2.United Arab Emirates University, Mechanical Engineering DepartmentAl AinUAE

Personalised recommendations