Mechanics of Composite Materials

, Volume 51, Issue 2, pp 177–190 | Cite as

Comparison of Fracture Energies of Epoxy-polysulfone Matrices and Unidirectional Composites Based on Them

  • V. I. Solodilov
  • R. A. Korokhin
  • Yu. A. Gorbatkina
  • A. M. Kuperman

The fracture energies of modified epoxy matrices and unidirectional glass (GFRP)-, organic (OFRP)-, and carbon (CFRP)-fiber-reinforced plastics based on them are compared. The unidirectional composites were fabricated by winding. Epoxy-polysulfone compositions were used as matrices containing from 5 to 20 wt.% of PSK-1 polysulfone. The matrices were cured with triethanolaminotitanate. It is shown that the fracture mechanisms of GFRP, OFRP, and CFRP in shear differ, which is supposedly related to the nature of fibers. The fracture energy of reinforced plastics is mainly determined by the impact strength of matrix. The delamination energy G IR cm of GFRP, OFRP, and CFRP increased monotonically with content of polysulfone in the matrix. A marked growth in G IR cm was observed at a content of polysulfone exceeding 10 wt.%. The crack resistance of the composites under investigation increased two times. The fracture toughness of GFRP and OFRP was 3-4 times higher than that of CFRP at any concentration of polysulfone. A growth in G IR m of the matrices started when the content of PSK-1 exceeded 5 wt.%, and at 15-20 wt.% of PSK-1, the values of G IR m increased four times. In all the cases investigated, a correlation between the crack resistance of reinforced plastics and that of polymeric matrices was observed.


polysulfone unidirectional reinforced plastics strength concentration dependences correlation of energies 


  1. 1.
    D. V. Bologov, A. M. Kuperman, and M. G. Karpman, “Effect of modification of an epoxy binder with a nitrile rubber on the physicomechanical properties of a unidirectional CFRP,” Mekh. Kompozits. Mater. Konstr., 5, No. 4, 33-41 (1999).Google Scholar
  2. 2.
    W. D. Bascom, J. L. Bitner, R. J. Moulton, and A. R. Siebert, “The interlaminar fracture of organic-matrix, woven reinforcement composites,” Composites, 11, No. 1, 9-18 (1980).CrossRefGoogle Scholar
  3. 3.
    M. L. Kerber et al., Polymer Composite Materials. Structure. Properties. Technologies. Manual, Professiya (2008).Google Scholar
  4. 4.
    N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, et al., Physics of Composite Materials [in Russian], Mir, Moscow (2005).Google Scholar
  5. 5.
    K. Mimura, H. Ito, and H. Fujioka, “Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins,” Polymer, 41, 4451-4459 (2000).CrossRefGoogle Scholar
  6. 6.
    I. Martinez, M. D. Martin, A. Eceiza, P. Oyanguren, and I. Mondragon, “Phase separation in polysulfone-modified epoxy mixtures. Relationship between curing conditions, morphology and ultimate behavior,” Polymer, 41, 1027-1035 (2000).CrossRefGoogle Scholar
  7. 7.
    P. T. McGrail and S. D. Jenkins, “Some aspects of interlaminar toughening: reactively terminated thermoplastic particles in thermoset composites,” Polymer, 34, No. 4, 677-683 (1993).CrossRefGoogle Scholar
  8. 8.
    E. V. Pisanova, S. F. Zhandarov, and O. R. Yurkevich, “Epoxy-polysulfone networks as advanced matrices for composite materials,” J. Adhesion, 64, No. 1, 111-129 (1997).CrossRefGoogle Scholar
  9. 9.
    Seunghan Shin and Jyongsik Jang, “The effect of thermoplastic coating on the mechanical properties of woven fabric carbon-epoxy composites,” J. Mater. Sci., 35, 2047-2054 (2000).CrossRefGoogle Scholar
  10. 10.
    V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional GFRPs based on an epoxy resin modified with polysulphone or an epoxyurethane oligomer,” Mech. Compos. Mater., 42, No. 6, 739-758 (2006).CrossRefGoogle Scholar
  11. 11.
    V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional CFRPs based on an epoxy resin modified with polysulphone or epoxyurethane oligomer,” Mekh. Kompozits. Mater. Konstr., 14, No. 2, 224-235 (2008).Google Scholar
  12. 12.
    W. J. Cantwell and J. Morton, “The impact resistance of composite materials — a review,” Composites, 22, No. 5, 347-362 (1991).CrossRefGoogle Scholar
  13. 13.
    R. L. Ellis, F. Lalande, H. Jia, and C. A. Rogers, “Ballistic impact resistance of SMA and Spectra hybrid graphite composites,” Polymer, 38, No. 2, 269-277 (1997).CrossRefGoogle Scholar
  14. 14.
    A. V. Antonov, E. S. Zelenskii, A. M. Kuperman, O. V. Lebedeva, and A. A. Rybin, “Behavior of reinforced plastics based on polysulfone matrix under impact loading,” Mech. Compos. Mater., 34, No. 1, 12-19 (1998).CrossRefGoogle Scholar
  15. 15.
    V. V. Vasil’ev and Yu. M. Tarnopol’skii (eds.), Composite Materials. Handbook [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  16. 16.
    P. G. Babaevskii (ed.), Practical Works in the Science of Polymer Materials [in Russian], Khimiya, Moscow (1980).Google Scholar
  17. 17.
    P. G. Babaevskii and S. G. Kulik, Crack Resistance of Cured Polymer Compositions [in Russian], Khimiya, Moscow (1991).Google Scholar
  18. 18.
    V. I. Solodilov, S. L. Bazhenov, Yu. A. Gorbatkina, and A. M. Kuperman, “Determination of the interlaminar fracture toughness of glass-fiber-reinforced plastics on ring segments,” Mech. Compos. Mater., 39, No. 5, 407-414 (2003).CrossRefGoogle Scholar
  19. 19.
    B.-G. Min, J. H. Hodgkin, and Z. H. Stachurski, “Reaction mechanism, microstructure, and fracture properties of thermoplastic polysulfone-modified epoxy resin,” J. Appl. Polym. Sci., 50, No. 6, 1065-1072 (1993).CrossRefGoogle Scholar
  20. 20.
    Hyun Sung Min and Sung Chul Kim, “Fracture toughness of polysulfone/epoxy semi-IPN with morphology spectrum,” Polymer Bulletin, 42, No. 2, 221-227 (1999).CrossRefGoogle Scholar
  21. 21.
    Ping Haung, Sixun Zheng, Jinyu Huang, Qipeng Guo, and Wei Zhu, “Miscibility and mechanical properties of epoxy resin/polysulfone blends,” Polymer, 38, No. 22, 5565-5571 (1997).CrossRefGoogle Scholar
  22. 22.
    H. Kishi, Y.-B. Shi, J. Huang, and A. F. Yee, “Shear ductility and toughenability study of highly cross-linked epoxy/polyethersulphone,” J. Mater. Sci., 32, 761-771 (1997).CrossRefGoogle Scholar
  23. 23.
    Zhikai Zhong, Sixun Zheng, Jinyu Huang, Xingguo Cheng, Qipeng Guo, and Jun Wei, “Phase behavior and mechanical properties of epoxy resin containing phenolphthalein poly(ether ether ketone),” Polymer, 39, No. 5, 1075-1080 (1998).CrossRefGoogle Scholar
  24. 24.
    A. E. Chalykh, V. K. Gerasimov, A. E. Bukhteev, A. V. Shapagin, G. Kh. Kudryakova, T. V. Brantseva, Yu. A. Gorbatkina, and M. L. Kerber, “Compatibility and evolution of the phase structure of blends of polysulfone with setting epoxy oligomers,” Vysokomol. Soed., 45A, No. 7, 1148-1159 (2003).Google Scholar
  25. 25.
    Yu. A. Gorbatkina, Adhesive Strength of Fiber-Polymer Systems, Ellis Horwood, New-York–London (1992).Google Scholar
  26. 26.
    T. V. Brantseva, Yu. A. Gorbatkina, V. Dutschk, K. Schneider, and R. Habler, “Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fiber composites. III. Properties of the cured blends and their structures in the polymer/fiber interphase,” J. Adhes. Sci. Technol., 18, No. 11, 1309-1323 (2004).CrossRefGoogle Scholar
  27. 27.
    T. V. Brantseva, Yu. A. Gorbatkina, E. Mader, V. Dutschk, and M. L. Kerber, “Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fiber composites. II. Adhesion of the epoxy-polysulfone matrices to glass fibers,” J. Adhes. Sci. Technol., 18, No. 11, 1293-1308 (2004).CrossRefGoogle Scholar
  28. 28.
    T. V. Brantseva, Yu. A. Gorbatkina, and M. L. Kerber, “Adhesion of epoxy-thermoplastic and polysulfone–LCP matrices to fibers,” Compos. Interfaces, 12, Nos. 3-4, 187-200 (2005).CrossRefGoogle Scholar
  29. 29.
    B. F. Sorensen and T. K. Jacobsen, “Large-scale bridging in composites: R-curves and bridging laws,” Composites, 29A, 1443-1451 (1998).CrossRefGoogle Scholar
  30. 30.
    T. K. Jacobsen and B. F. Sorensen, “Mode I intra-laminar crack growth in composites — modelling of R-curves from measured bridging laws,” Composites, 32A, 1-11 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. I. Solodilov
    • 1
  • R. A. Korokhin
    • 1
  • Yu. A. Gorbatkina
    • 1
  • A. M. Kuperman
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations