Mechanics of Composite Materials

, Volume 50, Issue 6, pp 681–694 | Cite as

Correlation Functions and Piezoelectromagnetic Properties of Structures Determined by the Method of Correlation Components

  • A. A. Pan’kov

A numerical analysis of two-point correlation functions for polydisperse unidirectional fibrous structures of composites is carried out. A refined analytical solution for predicting the effect of disorder of elements of the structures on the tensors of effective piezoelectromagnetic and thermoelastic properties of piezoactive composites is found.


correlation function random structure piezocomposite effective properties electromagnetoelasticity 



This study was financially supported by the grant of the Russian Fund for Basic Research No. 14-01-96020-р_ Ural_a.


  1. 1.
    A. A. Pan’kov and A. A. Tashkinov, “Singular approximation of the method of periodic components for quasi-periodic composite materials,” Deformir. Razrush. Strukt.-Neodnor. Mater., Ural. Otd. Akad. Nauk SSSR, Sverdlovsk, 93-101 (1992).Google Scholar
  2. 2.
    T. D. Shermergor, Elasticity Theory of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).Google Scholar
  3. 3.
    Yu. V. Sokolkin and A. A. Tashkinov, Mechanics of Deformation and Fracture of Structurally Inhomogeneous Bodies [in Russian], Nauka, Moscow (1984).Google Scholar
  4. 4.
    A. A. Pan’kov, “Elastic properties of quasi-periodic composites with account for correlation functions of the structure,” Nanomech. Sci. Technol. Int. J., 2, No. 3, 255-274 (2011).CrossRefGoogle Scholar
  5. 5.
    A. A. Pan’kov, Mechanics of Piezocomposites. Electro- and Magnetoelasticity of Inhomogeneous Media [in Russian], LAP LAMBERT Acad. Publ. (2011).Google Scholar
  6. 6.
    A. A. Pan’kov, “Influence of disorder of inclusions on the electromagnetic coupling factors of piezocomposites,” Mech. Compos. Mater., 48, No. 4, 427-434 (2012).CrossRefGoogle Scholar
  7. 7.
    R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York, (1979).Google Scholar
  8. 8.
    A. A. Pan’kov, “Piezoactive unidirectional fibrous polydisperse composites,” Mech. Compos. Mater., 48, No. 6, 603-610 (2012).CrossRefGoogle Scholar
  9. 9.
    A. A. Pan’kov, “Maxwell–Wagner relaxation in fibrous polydisperse magnetoelectric piezocomposites,” Mech. Compos. Mater., 49, No. 1, 45-50 (2013).CrossRefGoogle Scholar
  10. 10.
    A. A. Pan’kov, “Polydisperse structures of composites with random elastic properties of inclusions,” Mech. Compos. Mater., 36, No. 1, 19-36 (2000).CrossRefGoogle Scholar
  11. 11.
    A. A. Pan’kov, Methods of Self-Consistency in Composite Mechanics [in Russian], Izdat. PGTU, Perm (2008).Google Scholar
  12. 12.
    A. A. Pan’kov, “Self-consistent solutions for the coefficients of electromagnetic coupling of fibrous piezocomposites,” Mekh. Kompoz. Mater. Konstr., 19, No. 2, 233-243 (2013).Google Scholar
  13. 13.
    D. Volkov and V. P. Stavrov, Statistic Mechanics of Composite Materials [in Russian], Izdat. Beloruss. Univ., Minsk (1978).Google Scholar
  14. 14.
    S. Torquato and G. Stell, “Microstructure of two-phase random media. I. The n-point probability functions,” J. Chem. Phys., 77, No. 4, 2071-2077 (1982).CrossRefGoogle Scholar
  15. 15.
    I. Monetto and W. J. Drugan, “A micromechanics-based nonlocal constitutive equation for elastic composites containing randomly oriented spheroidal heterogeneities,” J. Mech. Phys. Solids, 52, 359-393 (2004).CrossRefGoogle Scholar
  16. 16.
    S. G. Ivanov and D. S. Ivanov, “Effect of the volume fraction of fibers on the statistical characteristics of composites of random structure,” Mekh. Kompoz. Mater. Konstr., 8, No. 3, 344-350 (2002).Google Scholar
  17. 17.
    V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectric and Electroconductive Bodies [in Russian], Nauka, Moscow (1988).Google Scholar
  18. 18.
    I. P. Getman, “On the magnetoelectric effect in piezocomposites,” Dokl. Akad. Nauk SSSR, 317, No. 2, 341-343 (1991).Google Scholar
  19. 19.
    R. I. Karalyunas, “Effective thermopiezoelectric properties of laminated composites,” Mech. Compos. Mater., 26, No. 5, 598-604 (1990).CrossRefGoogle Scholar
  20. 20.
    G. M. Sessler, “Piezoelectricity in polyvinylidenefluoride,” J. Acoust. Soc. Amer., 70, No. 6, 1596-1608 (1981).CrossRefGoogle Scholar
  21. 21.
    L. P. Khoroshun, B. P. Maslov, and P. V. Leshchenko, Prediction of the Effective Properties of Piezoactive Composite Materials [in Russian], Naukova Dumka, Kiev (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Perm National Research Polytechnical UniversityPermRussia

Personalised recommendations