Mechanics of Composite Materials

, Volume 50, Issue 2, pp 155–164 | Cite as

The Effect of Void Shape and Volume Fraction of Fibers on the Stress Distribution in a Laminated Composite Plate with Triangular Fibers

  • H. Robati
  • A. Haghparast
  • M. Shishesaz
  • P. Attarroshan

The effect of void shape and volume fraction of fibers on the distribution of stresses in a laminated composite plate subjected to a tensile load applied in the fiber direction is investigated. The cross section of all fibers is triangular. The void can simulate an internal crack or a cylindrical hole. The shear-lag model is used to derive the field equations. By using proper boundary and bonding conditions, complete load and displacement fields in the laminate are determined. The effects of physical parameters of fibers and of void shape and its location on stress concentrations and peak shear stresses in the laminate are studied. The analytical results for stress concentration factors are compared with those given by the finite-element method, and a close agreement between them is found to exist.


composite laminate stress concentration shear-lag model triangular fibers 


  1. 1.
    H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” British J. of Appl. Phys., 3, No. 3, 72-79 (1952).CrossRefGoogle Scholar
  2. 2.
    J. M. Hedgepeth, “Stress concentrations in filamentary structures,” NASA-TND 882, (1961).Google Scholar
  3. 3.
    J. M. Hedgepeth P. Van Dyke, “Local stress concentrations in imperfect filamentary composite materials,” J. of Compos. Mater., 1, 294-309 (1967).Google Scholar
  4. 4.
    I. J. Beyerlein, S. L. Phoenix, and A. M. Sastry, “Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and matrix stresses in an elastic cracked composite lamina,” Int. J. Solids Struct., 33, 2543-2574, (1996).CrossRefGoogle Scholar
  5. 5.
    M. R. Nedele and M. R. Wisnom, “Stress concentration factors around a broken fibre in a unidirectional carbon fibrereinforced epoxy,” Composites, 25, 549-557 (1994).CrossRefGoogle Scholar
  6. 6.
    M. R. Nedele and M. R. Wisnom, “Three-dimensional finite element analysis of the stress concentration at a single fibre break,” Compos. Sci. Technol., 51, 517-524, (1994).CrossRefGoogle Scholar
  7. 7.
    C. M. Landis and R. M. McMeeking, “Stress concentrations in composites with interface sliding, matrix stiffness and uneven fiber spacing using shear lag theory,” Int. J. Solids Struct., 36, 4333-4361 (1999).CrossRefGoogle Scholar
  8. 8.
    J. N. Rossettos and M. Shishehsaz, “Stress concentration in fiber composite sheets including matrix extension,” J. Appl. Mech., 54 (1987).Google Scholar
  9. 9.
    H. Fukuda and T. W. Chou, “Stress concentration in a hybrid composite sheet,” J. Appl. Mech., 50, 845-848 (1983).CrossRefGoogle Scholar
  10. 10.
    M. Shishehsaz, “Hybridization effect on stress distribution in short fiber composite monolayer of finite width,” CSME Mechanical Engineering Forum, Toronto, Canada, (1990).Google Scholar
  11. 11.
    C. M. Landis, M. A. McGlockton, and R. M. McMeeking, “An improved shear-lag model for broken fibers in composite materials,” J. Compos. Mater. 33, 667-680 (1999).CrossRefGoogle Scholar
  12. 12.
    C. M. Landis, I. J. Beyerlein, and R. M. McMeeking, “Micromechanical simulation of the failure of fiber-reinforced composites,” J. Mech. Phys. Solids, 48, 621-648, (2000).CrossRefGoogle Scholar
  13. 13.
    T. Okabe and N. Takeda, “Elastoplastic shear-lag analysis of single-fiber composites and strength prediction of unidirectional multifiber composites,” Composites: Part A: Appl. Sci. and Manufacturing, 33, No. 10, 1327-1335 (2002).CrossRefGoogle Scholar
  14. 14.
    T. Okabe, N. Takeda, Y. Kamoshida, M. Shimizu, and W. A. Curtin, “A 3D shear-lag model considering microdamage and statistical strength prediction of unidirectional fiber-reinforced composites,” Compos. Sci. Technol., 61, No. 12, 1773-1787 (2001).CrossRefGoogle Scholar
  15. 15.
    Y. Okabe, N. Tanaka, and N. Takeda, “Effect of fiber coating on crack detection in carbon-fiber-reinforced plastic composites using fiber Bragg grating sensors,” Smart Materials and Structures, 11, No. 6, 892-898 (2002).CrossRefGoogle Scholar
  16. 16.
    S. Ochiai, K. Schulte, and P. W. M. Peters, “Strain concentration factors for fibers and matrix in unidirectional composites,” Compos. Sci. Technol., 41, 237-256 (1991)CrossRefGoogle Scholar
  17. 17.
    K. Goda, “A strength reliability model by the Markov process of unidirectional composites with fibers placed in hexagonal arrays,” Int. J. Solids Struct., 40, 6813-6837 (2003).CrossRefGoogle Scholar
  18. 18.
    T. j. Kim and C. K. Park, “Flextural and tensile strength developments of various-shape carbon-fiber-reinforced light weight cementitious composites,” Concrete Research, 7, p.955 (1998).CrossRefGoogle Scholar
  19. 19.
    I. Bond, M. Hucker, P. Weaver, St. Bleay, and S. Haq, “Mechanical behavior of circular and triangular glass fibers and their composites,” J. Compos. Sci. Technol., 62 (2002).Google Scholar
  20. 20.
    S. J. Park, M. K. Seo, and H. B. Shim, “Effect of fiber shapes on the physical characteristics of non-circular carbon- -fiber-reinforced composites,” J. Mater. Sci. and Engineering, A352, p. 34 (2003).CrossRefGoogle Scholar
  21. 21.
    J. Harris, I. P. Bond, P. M. Weaver, M. R. Wisnom, and A. Rezai, “Measuring strain energy release rate (G Ic) in novel fibre shape composites,” J. Compos. Sci. Technol., 66, 1239-1247 (2006).CrossRefGoogle Scholar
  22. 22.
    S. Sirivedin, D. N. Fenner, R. B. Nath, and C. Galiotis, “Effects of inter-fiber spacing and matrix cracks on stress amplification factors in carbon-fiber/epoxy matrix composites. Part I. Planar array of fibers,” J. Composites: Part A: Appl. Sci. and Manufacturing, 34 (2003).Google Scholar
  23. 23.
    P. W. J. van den Heuvel, T. Peijs and R. J. Young “Failure phenomena in two-dimensional multi-fiber microcomposites. Part 4. A Raman spectroscopic study on the influence of the matrix yield stress on stress concentrations,” J. of Composites: Part A, 31, 165-171 (2000).CrossRefGoogle Scholar
  24. 24.
    D. T. Grubb, Li Zong-Fu, and S. Leigh Phoenix, ‘Measurement of stress concentration in a fiber adjacent to a fiber break in a model composite,” Compos. Sci. Technol., 53, 237-249 (1995).CrossRefGoogle Scholar
  25. 25.
    X.-F. Zhou and H. D. Wagner, “Stress concentrations caused by fiber failure in two-dimensional composites,” Compos. Sci. Technol., 59, 1063-1071 (1999).CrossRefGoogle Scholar
  26. 26.
    H. D. Wagner and A. Eitan, “Stress concentration factors in two-dimensional composites: effects of material and geometrical parameters,” Compos. Sci. Technol., 46, 353-362 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • H. Robati
    • 1
  • A. Haghparast
    • 2
  • M. Shishesaz
    • 3
  • P. Attarroshan
    • 2
  1. 1.Department of Mechanics, Dezful BranchIslamic Azad UniversityDezfulIran
  2. 2.Department of Mechanics, Ahvaz BranchIslamic Azad UniversityAhvazIran
  3. 3.Faculty of EngineeringShahid Chamran UniversityAhwazIran

Personalised recommendations