Mechanics of Composite Materials

, Volume 48, Issue 3, pp 243–252 | Cite as

Mechanical properties of elastomers filled with solid particles

  • A. S. Ermilov
  • E. M. Nurullaev

A physical-mechanical description of the mechanical characteristics of a three-dimensional cross-linked plasticized elastomer filled with solid particles is presented. The basic structural parameters of the composition and the temperature-rate equivalence in the uniaxial tension of specimens are taken into account. Examples of solution of direct and inverse prediction problems are given.


filled elastomer mechanics influence of structure 


  1. 1.
    I. R. G. Treloar, “The elasticity and related properties of rubbers,” Rubber Rew., 47, 625–696 (1974).Google Scholar
  2. 2.
    J. R. Rutgers, Rheological Acta, 2, No. 4, 305–348 (1962).CrossRefGoogle Scholar
  3. 3.
    J. S. Chong, E. B. Christiansen, and A. D. Boer, J. Appl. Polym. Sci., 15, 2007–2024 (1971).Google Scholar
  4. 4.
    L. E. Nielsen, Mechanical Properties of Polymers and Composites, Marcel Dekker, Inc., New York (1974).Google Scholar
  5. 5.
    F. Bueche, Physical Properties of Polymers, Wiley Interscience, New York (1962).Google Scholar
  6. 6.
    J. H. Saunders and K. C. Frish, Polyurethanes. Part I. Chemistry, Interscience Publ., New York–London (1962).Google Scholar
  7. 7.
    R. Fedors, “Effect of filler on the mechanical behavior of elastomers. Relationships between the small strain modulus and the type and concentration of filler,” Polymer, 20, No. 3, 324–328 (1979).Google Scholar
  8. 8.
    T. B. Lewis and L. E. Nielsen, “Viscosity of dispersions and aggregates of suspensions of spheres,” Trans. Soc. Rheology, 12, No. 3, 421–443 (1968).CrossRefGoogle Scholar
  9. 9.
    Y. Sato and J. Furukawa, “A molecular theory of filler reinforcement based upon the conception of internal deformation,” Rub. Chem. Technol., 36, No. 4, 1081–1106 (1963).CrossRefGoogle Scholar
  10. 10.
    R. Fedors and R. Landel, “Mechanical behavior of SBR-glass bead composites,” J. Polym. Sci., No. 3, 579–601 (1975).Google Scholar
  11. 11.
    R. J. Farris, “The character of the stress–strain function for highly filled elastomers,” Trans. Soc. Rheology, 12, No. 2, 303–314 (1968).CrossRefGoogle Scholar
  12. 12.
    R. J. Farris, “The influence of vacuole formation on the response and failure of filled elastomers,” Trans. Soc. Rheology, 12, No. 2, 315–334 (1968).CrossRefGoogle Scholar
  13. 13.
    T. L. Smith and W. H. Chy, “Ultimate tensile properties of elastomers” J. Polym. Sci., Pt. A-2, 10, No. 1, 133–150 (1972).Google Scholar
  14. 14.
    V. B. Zabrodin, V. I. Zykov, and G. N. Chui, “Molecular structure of cross-linked polymers,” Vysokomol. Soed., 17A, No. 1, 163–169 (1975).Google Scholar
  15. 15.
    Van Krevelen, Properties and Chemical Structure of Polymers [Russian translation], Khimiya, Moscow (1976).Google Scholar
  16. 16.
    J. Manson and L. Sperling, Polymer Blends and Composites, Plenum Press, New York (1976).Google Scholar
  17. 17.
    R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York, (1979).Google Scholar
  18. 18.
    T. Fudzii and M. Dzako, Fracture Mechanics of Composite Materials [Russian translation], Mir, Moscow (1982).Google Scholar
  19. 19.
    A. S. Yermilov and K. A. Zyryanov, “Concentration dependence for strengthening rubbers and resins by disperse fillers,” Zavod. Lab. Diagnost. Mater., 67, No. 9, 62–64 (2001).Google Scholar
  20. 20.
    A. S. Yermilov and A. M. Fedoseyev, “Combinatorial-multiplicative method for calculating the limiting filling of composites with solid dispersed components,” Zh. Prikl. Khim., 77, Iss. 7, 1218–1220 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Perm’ State Technical UniversityPermRussia

Personalised recommendations