Analysis of the effect of impact damage on the strength characteristics of a composite

  • I. Pavelko
  • M. Smolyaninov

Theoretical and experimental investigations into the loss of the static tensile strength of a KMKU-2M.120. E01 composite after low-speed impacts of different energy have been carried out. All calculations are performed by the method of finite elements. The drop in the strength as a function of impact energy is estimated according to two criteria: the criterion of an equivalent hole (the upper limit of loss of strength) and the criterion of concentration (the lower limit of loss of strength). The results obtained agree closely with experimental data and therefore can be recognized as reliable.


impact damage impact energy loss of strength criterion of an equivalent hole criterion of concentration 


  1. 1.
    I. I. McNaughton, Aircraft Eng., 36, 409–412 (1964).CrossRefGoogle Scholar
  2. 2.
    A. W. R. Allcock and D. M. Collin, “The development of a dummy bird for use in bird strike research,” Nat. Gas Turbine Establishment (U. K.) (N. G. T. E.), Rep. No. C. P., No. 1071 (1968).Google Scholar
  3. 3.
    R. J. J. Hayduk, Aircraft, 10, No. 1, 52–55 (1973).CrossRefGoogle Scholar
  4. 4.
    H. D. Conway, H. C. Lee, and R. G. Bayer, “The impact between a rigid sphere and a thin layer,” Trans. ASME, Appl. Mech., Ser. E, No. 1 (1970).Google Scholar
  5. 5.
    H. D. Conway and H. C. Lee, “Impact of an indenter on a large plate,” Trans. ASME, Appl. Mech., Ser. E, No. 1 (1970).Google Scholar
  6. 6.
    N. A. Kil’chevskii, Theory of Collision of Solids [in Russian], Moscow–Leningrad, OGIZ (1949).Google Scholar
  7. 7.
    S. P. Timoshenko, Vibrations in Engineering [in Russian], Nauka, Moscow (1967).Google Scholar
  8. 8.
    “Foreign object impact damage in composites,” ASTM STP, No. 568, (1975).Google Scholar
  9. 9.
    J. A. Zukas, T. Nicholas, L. B. Greszcuk, and D. R. Curran, Impact Dynamics, John Wiley & Sons, New York (1982), pp. 9–45.Google Scholar
  10. 10.
    I. G. Zhigun and V. A. Polyakov, Properties of Spatially Reinforced Plastics [in Russian], Zinatne, Riga (1978).Google Scholar
  11. 11.
    G. M. Gunyaev, Structure and Properties of Fibrous Polymer Composites [in Russian], Khimiya, Moscow (1981).Google Scholar
  12. 12.
    Yu. M. Tarnopol’skii, A. V. Rose, I. G. Zhigun, and G. M. Gunyaev, “Structural features of materials reinforced with high-modulus fibers,” Mekh. Polim., No. 4, 676–685 (1971).Google Scholar
  13. 13.
    V. A. Polyakov and V. V. Tanevskii, “Experimental evaluation of the shear rigidity of composites with a variable law of stacking of reinforcement,” Mech. Compos. Mater., No. 5, 912–918 (1980).Google Scholar
  14. 14.
    Yu. M. Tarnopol’skii, I. G. Zhigun, and V. A. Polyakov, Spatially Reinforced Composites. Handbook [in Russian], Mashinostroenie, Moscow (1987).Google Scholar
  15. 15.
    K. K. Dudka and I. N. Preobrazhenskii, “An approach to the estimation of impact stability of CFRP,” Mech. Compos. Mater., No. 4, 624–628 (1983).Google Scholar
  16. 16.
    B. P. Rusov, “A method for estimating the impact strength of polymer composite materials,” in: Mekh. Konstr. Kompoz. Mater., Nauka, Novosibirsk (1984), pp. 88–91.Google Scholar
  17. 17.
    V. P. Pavelko, I. V. Pavelko, and R. Chatys, “Effect of low-speed impact damages on the strength of fibrous composites,” in: Trans. All-Russ. Conf. “Irreversible Processes in Nature and Technics,” Bauman Mos. Gos. Tekhn. Univ., Moscow (2007), pp. 352–355.Google Scholar
  18. 18.
    I. V. Pavelko, V. P. Pavelko, and R. Chatys, “Strength of fibrous composites with impact damage,” Conference “ Kompozyty polimerowe”, Warszawa: Oficyna wydawnicza politechniki warszawskiej, Mechanika Zeszyt Naukowy, No. 219, 187–198 (2007).Google Scholar
  19. 19.
    I. Pavelko, V. Pavelko, R. Chatys, and D. Kepka, “Some regularities of impact damage of fibrous composite,” Sci. Proc. of Riga Techn. Univ., Ser. 6 “Transport and Engineering. Transport. Aviation Transport,” No. 27, 350–358 (2008).Google Scholar
  20. 20.
    “Some results of static tests on composite specimens of a smooth panel in tension, compression, and shear,” Report No. 08/AT-03., Airtest LNK, Riga (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Aviation InstituteRiga Technical UniversityRigaLatvia
  2. 2.RSEC “Aviatest LNK” Ltd.RigaLatvia

Personalised recommendations