Mechanics of Composite Materials

, Volume 47, Issue 1, pp 11–36 | Cite as

Some aspects of the design and applications of nanohoneycomb and nanofiber array structures

  • W. Hwang
  • K. H. Lee
  • H. Park
  • J. Kim
  • J. Park
  • J. H. Cho
  • J. H. Jeon
  • D. Choi
  • D. Kim
  • D. Kim
  • S. Kim
  • K. Lee
  • T. Jing
  • S. Lee

Simple, inexpensive, reproducible nanofabrication techniques for nanohoneycomb and nanofiber array structures (NFASs) are reported. The resulting nanostructures can be deployed in diverse applications, including biological, medical, and industrial products.


nanohoneycomb anodic aluminum oxide nanofiber array structures superhydrophobicity superhydrophilicity 



This research was supported by the LG Yonam Foundation, Korea.


  1. 1.
    A. M. Hynes et al., “Recent advances in silicon etching for MEMS using the ASE process,” Sensor Actuat. A-Phys., 74, 13 (1999).CrossRefGoogle Scholar
  2. 2.
    Gad-el-Hak Mohamed et al., The MEMS Handbook, Ch. 17, CRC Press (2002).Google Scholar
  3. 3.
    H. Masuda et al., “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, 268, 1466 (1995).CrossRefGoogle Scholar
  4. 4.
    A. P. Li et al., “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., 84, 6023 (1998).CrossRefGoogle Scholar
  5. 5.
    O. Jessensky et al., “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., 72, No. 10, 1173 (1998).CrossRefGoogle Scholar
  6. 6.
    H. Masuda, K. Yada, and A. Osaka, Japan. J. Appl. Phys. 37, L1340 (1998).CrossRefGoogle Scholar
  7. 7.
    S. K. Hwang et al., “Fabrication of highly ordered pore array in anodic aluminum oxide,” Korean J. Chem. Eng., 19, 467 (2002).CrossRefGoogle Scholar
  8. 8.
    K. Nielsch et al., “Hexagonally ordered 100 nm period nickel nanowire arrays,” Appl. Phys. Lett., 79, 1360 (2001).CrossRefGoogle Scholar
  9. 9.
    R. Karmhag et al., “Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix,” Solar Energy, 68, 329 (2000).CrossRefGoogle Scholar
  10. 10.
    G. Che et al., “Carbon nanotube membranes for electrochemical energy storage and production,” Nature, 393, 346 (1998).CrossRefGoogle Scholar
  11. 11.
    G. Che et al., “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,” Chem. Mater., 10, 260 (1998).CrossRefGoogle Scholar
  12. 12.
    Z. B. Zhang et al., “Processing and characterization of single-crystalline ultrafine bismuth nanowires,” Chem. Mater., 11, 1659 (1999).CrossRefGoogle Scholar
  13. 13.
    G. Sauer et al., “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys., 91, 3243 (2002).CrossRefGoogle Scholar
  14. 14.
    J. Bico et al., “Rough wetting,” Europhys. Lett., 55, 214 (2001).CrossRefGoogle Scholar
  15. 15.
    J. Bico et al., “Pearl drops,” Europhys. Lett., 47, 220 (1999).CrossRefGoogle Scholar
  16. 16.
    K. Tadanaga et al., Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method,” Chem. Mater., 12, 590 (2000).CrossRefGoogle Scholar
  17. 17.
    D. Öner et al., “Ultrahydrophobic surfaces. Effects of topography length scales on wettability,” Langmuir, 16, 7777 (2000).CrossRefGoogle Scholar
  18. 18.
    J. P. Youngblood et al., “Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma,” Macromolecules, 32, 6800 (1999).CrossRefGoogle Scholar
  19. 19.
    W. Chen et al., “Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples,” Langmuir, 15, 3395 (1999).CrossRefGoogle Scholar
  20. 20.
    Rocio Redon et al., “Contact angle studies on anodic porous alumina,” J. Colloid Interface Sci., 287, No. 2, 664 (2005).CrossRefGoogle Scholar
  21. 21.
    L. Feng et al., “Creation of a superhydrophobic surface from an amphiphilic polymer,” Angew. Chem. Int. Edn. Engl., 42, No. 7, 800 (2003).CrossRefGoogle Scholar
  22. 22.
    S. M. M. Ramos et al., “Contact angle hysteresis on nano-structured surfaces,” Surface Sci., 540, Nos. 2–3, 355 (2003).CrossRefGoogle Scholar
  23. 23.
    S. M. M. Ramos et al., “Wetting on nanorough surfaces,” Phys. Rev. E, 67, No. 3, 031604 (2003).CrossRefGoogle Scholar
  24. 24.
    H. Liu et al., “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir, 20, No. 14, 5659 (2004).CrossRefGoogle Scholar
  25. 25.
    J. Hemmerle et al., “Mechanically responsive films of variable hydrophobicity made of polyelectrolyte multilayers,” Langmuir, 21, No. 23, 10328 (2005).CrossRefGoogle Scholar
  26. 26.
    Y. Jiang et al., “Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces,” Langmuir, 21, No. 5, 1986 (2005).CrossRefGoogle Scholar
  27. 27.
    N. Kanai et al.,“Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering,” Vacuum, 74, Nos. 3–4, 723 (2004).CrossRefGoogle Scholar
  28. 28.
    T. Kemmitt, “Photocatalytic titania coatings,” Curr. Appl. Phys., 4, Nos. 2–4, 189 (2004).CrossRefGoogle Scholar
  29. 29.
    X. Zhao, “Morphology and hydrophobicity of a polyurethane film molded on a porous anodic alumina template,” Surface Coat. Technol., 200, No. 11, 3492 (2006).CrossRefGoogle Scholar
  30. 30.
    W. C. Oliver et al., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, No. 6, 1564 (1992).CrossRefGoogle Scholar
  31. 31.
    A. C. Fischer-Cripps, Nanoindentation, Springer (2002).Google Scholar
  32. 32.
    A. Delafargue et al., “Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters,” Int. J. Solid Struct., 41, No. 26, 7351 (2004).CrossRefGoogle Scholar
  33. 33.
    S. Cho et al., “Measurement of nanodisplacements and elastic properties of MEMS via the microscopic hole method,” Sens. Actuators A, 120, No. 1, 163 (2005).CrossRefGoogle Scholar
  34. 34.
    K. M. Jackson et al., “Fracture strength, elastic modulus and Poisson’s ratio of polycrystalline 3C thin-film silicon carbide found by microsample tensile testing,” Sens. Actuators A, 125, No. 1, 34 (2005).CrossRefGoogle Scholar
  35. 35.
    Y. M. Tarnopol’skii et al., “Measurements of shear characteristics of textile composites,” Comput. Struct., 76, Nos. 1–3, 115 (2000).CrossRefGoogle Scholar
  36. 36.
    J. M. Whitney, Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing (1987).Google Scholar
  37. 37.
    O. Jessensky et al., “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Let., 72, No. 10 (1998).Google Scholar
  38. 38.
    J. H. Jeon et al., “Measuring the tensile and bending properties of nanohoneycomb structures,” Mech. Compos. Mater., 42, No. 2, 173–186 (2006).CrossRefGoogle Scholar
  39. 39.
    D. H. Choi et al., Mechanical Characterization and Tribophysics of Nanohoneycomb Structures, Ph.D. Thesis, Pohang Univ. Sci. Technol. (2006).Google Scholar
  40. 40.
    S. H. Ko et al., “Mechanical properties and residual stress in porous anodic alumina structures,” Thin Solid Films, 515, No. 4, 1932 (2006).CrossRefGoogle Scholar
  41. 41.
    N. G. Chechenin et al.,“Nanoindentation of Amorphous aluminum oxide films I. The influence of the substrate on the plastic properties,” Thin Solid Films, 261, Nos.1-2, 219 (1995).CrossRefGoogle Scholar
  42. 42.
    C. K. Bora et al., “Multiscale roughness and modeling of MEMS interfaces,” Trib. Lett., 19, No. 1, 37 (2005).CrossRefGoogle Scholar
  43. 43.
    L. Sirghi et al., “Adhesion and elasticity in nanoscale indentation,” Appl. Phys. Lett., 89, No. 24, 243118 (2006).CrossRefGoogle Scholar
  44. 44.
    M. J. Brukman et al., “Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity,” Langmuir, 22, No. 9, 3988 (2006).CrossRefGoogle Scholar
  45. 45.
    D. Choi et al., “Improved lateral force calibration based on the angle conversion factor in atomic force microscopy,” J. Microsc. 228, No. 2, 190 (2007).CrossRefGoogle Scholar
  46. 46.
    F. Matsumoto et al., “Nanometer-scale patterning of DNA in controlled intervals on a gold-disk array fabricated using ideally ordered anodic porous alumina,” Adv. Mater., 17, No. 13, 1609 (2005).CrossRefGoogle Scholar
  47. 47.
    D. H. Pearson et al., “Nanochannel Glass Replica Membranes,” Science, 270, No. 5233, 68 (1995).CrossRefGoogle Scholar
  48. 48.
    O. Lyandres et al., “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem., 77, No. 19, 6134 (2005).CrossRefGoogle Scholar
  49. 49.
    G. A. Ozin et al., “Nanochemistry: Synthesis in diminishing dimensions,” Adv. Mater., 4, No. 10, 612 (1992).CrossRefGoogle Scholar
  50. 50.
    T. D. Clark et al., “Supramolecular design by covalent capture. Design of a peptide cylinder via hydrogen-bond-promoted intermolecular olefin metathesis,” J. Am. Chem. Soc., 117, No. 49, 12364 (1995).CrossRefGoogle Scholar
  51. 51.
    H. Masuda et al., “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett., 71, No. 19, 2770 (1997).CrossRefGoogle Scholar
  52. 52.
    A. P. Li et al., “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater., 11, No. 6, 483 (1999).CrossRefGoogle Scholar
  53. 53.
    D. Choi et al., “Dependence of the mechanical properties of nanohoneycomb structures on porosity,” J. Micromech. Microeng., 17, No. 3, 501 (2007).CrossRefGoogle Scholar
  54. 54.
    K. Dionne et al., “Transport characterization of membranes for immunoisolation,” Biomaterials, 17, No. 3, 257 (1996).CrossRefGoogle Scholar
  55. 55.
    T. A. Desai, “Microfabrication technology for pancreatic cell encapsulation,” Exp. Opin. Biol. Ther. 2, No. 6, 633 (2002).CrossRefGoogle Scholar
  56. 56.
    D. Kim et al., “Superhydrophobic nano-wire entanglement structures,” J. Micromech. Microeng., 16, 2593 (2006).CrossRefGoogle Scholar
  57. 57.
    S. Lee et al., “Ultralow contact angle hysteresis and no-aging effects in superhydrophobic tangled nanofiber structures generated by controlling the pore size of a 99.5% aluminum foil,” J. Micromech. Microeng., 19, 035019 (2009).CrossRefGoogle Scholar
  58. 58.
    D. Kim et al., “A superhydrophobic dual-scale engineered lotus leaf,” J. Micromech. Microeng., 18, 015019 (2008).CrossRefGoogle Scholar
  59. 59.
    D. Kim et al., “A template-based superhydrophobic tube structure with nanofiber forests and its mass flow characteristic,” J. Micromech. Microeng., 20, 027002 (2010).CrossRefGoogle Scholar
  60. 60.
    S. Lee et al., “Tens of centimeter-scale flexible superhydrophobic nanofiber structures through curing process,” Lab Chip, 9, 2234 (2009).CrossRefGoogle Scholar
  61. 61.
    A. Lafuma et al., “Superhydrophobic states,” Nat. Mater., 2, 457 (2003).CrossRefGoogle Scholar
  62. 62.
    K. Lee et al., “Characteristics and self-cleaning effect of the transparent super-hydrophobic film having nanofibers array structures,” Appl. Surface Sci., 256, No. 22, 6729 (2010).CrossRefGoogle Scholar
  63. 63.
    I. Tanford, “Interfacial free energy and the hydrophobic effect,” Proc. Nat. Acad. Sci. USA, 76, No. 9, 4175 (1979).CrossRefGoogle Scholar
  64. 64.
    J. A. Reynolds et al., “Empirical correlation between hydrophobic free energy and aqueous cavity surface area,” Proc. Nat. Acad. Sci. USA, 71, 2925 (1974).CrossRefGoogle Scholar
  65. 65.
    B. P. Binks et al., “Solid wettability from surface energy components: relevance to Pickering emulsions,” Langmuir, 18, No. 4, 1270 (2002).CrossRefGoogle Scholar
  66. 66.
    M. Rosenberg et al., “Hydrophobic interactions in bacterial adhesion,” Microbial Ecology, 9, 353 (1986).Google Scholar
  67. 67.
    J. K. Dillon et al., “A comparison of five methods for assaying bacterial hydrophobicity,” J. Microbiol. Methods, 6, No. 1, 13 (1986).CrossRefGoogle Scholar
  68. 68.
    N. Mozes et al., “Methods for measuring hydrophobicity of microorganisms,” J. Microbiol. Methods, 6, 99 (1987).CrossRefGoogle Scholar
  69. 69.
    D. H. Kim et al., “Overcoming of nanoscale adhesion by electrostatic induction,” Curr. Appl. Phys., 9, 703 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • W. Hwang
    • 1
  • K. H. Lee
    • 2
  • H. Park
    • 1
  • J. Kim
    • 1
  • J. Park
    • 1
  • J. H. Cho
    • 3
  • J. H. Jeon
    • 1
  • D. Choi
    • 4
  • D. Kim
    • 1
  • D. Kim
    • 1
  • S. Kim
    • 1
  • K. Lee
    • 1
  • T. Jing
    • 1
  • S. Lee
    • 1
  1. 1.NSCS Laboratory, Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.FEEL Laboratory, Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  3. 3.Department of Endocrinology, Seoul St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  4. 4.Department of Mechanical engineering, College of EngineeringKyung Hee UniversityGyeonggiRepublic of Korea

Personalised recommendations