Mechanics of Composite Materials

, Volume 46, Issue 4, pp 425–434 | Cite as

Bending of thick functionally graded plates resting on Winkler–Pasternak elastic foundations

  • S. Benyoucef
  • I. Mechab
  • A. Tounsi
  • A. Fekrar
  • H. Ait Atmane
  • El Abbas Adda Bedia

The static response of simply supported functionally graded plates (FGP) subjected to a transverse uniform load (UL) or a sinusoidally distributed load (SL) and resting on an elastic foundation is examined by using a new hyperbolic displacement model. The present theory exactly satisfies the stress boundary conditions on the top and bottom surfaces of the plate. No transverse shear correction factors are needed, because a correct representation of the transverse shear strain is given. The material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. The foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second parameter is zero. The equilibrium equations of a functionally graded plate are given based on the hyperbolic shear deformation theory of plates presented. The effects of stiffness and gradient index of the foundation on the mechanical responses of the plates are discussed. It is established that the elastic foundations significantly affect the mechanical behavior of thick functionally graded plates. The numerical results presented in the paper can serve as benchmarks for future analyses of thick functionally graded plates on elastic foundations.


FG plates Winkler–Pasternak elastic foundation shear deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Koizumi, “FGM activities in Japan,” Composites, 28, 14 (1997).Google Scholar
  2. 2.
    Reddy J.N., “Analysis of functionally graded plates,” Int. J. Num. Meth. Eng., 47, 663–84 (2000).MATHCrossRefGoogle Scholar
  3. 3.
    Z. Q. Cheng and R. C. Batra, “Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories,” Arch. Mech., 52, 143–58 (2000).MATHGoogle Scholar
  4. 4.
    Z. Q. Cheng and R. C. Batra, “Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates,” J. Sound Vibrat., 229, 879–95 (2000).CrossRefADSGoogle Scholar
  5. 5.
    C. T. Loy, K. Y. Lam, and J. N. Reddy, “Vibration of functionally graded cylindrical shells,” Int. J. Mech. Sci., 41, 309–24 (1999).MATHCrossRefGoogle Scholar
  6. 6.
    A. M. Zenkour, “Generalized shear deformation theory for bending analysis of functionally graded materials,” Appl. Math. Model., 30, 67–4 (2006).MATHCrossRefGoogle Scholar
  7. 7.
    A. D. Kerr, “Elastic and viscoelastic foundation models,” ASME J. Appl. Mech., 31, No. 3, 491–98 (1964).MATHGoogle Scholar
  8. 8.
    B. N. Zhemochkin and A. P. Sinitsyn, Practical Methods of Calculation of Foundation Beams and Slabs on Elastic Foundation [in Russian], Stroiizdat, Moscow (1947).Google Scholar
  9. 9.
    M. M. Filonenko-Borodich, Some Approximate Theories of Die Elastic Foundation [in Russian], Uch. Zapiski Mosk. Gos. Univ. Mekhanika., 46, 3–18 (1940).Google Scholar
  10. 10.
    M. Hetényi, Beams on Elastic Foundations, The Univ. Michigan Press, Ann Arbor, Michigan (1946).Google Scholar
  11. 11.
    M. Hetényi, “A general solution for the bending of beams on an elastic foundation of arbitrary continuity,” J. Appl. Phys., 21, 55–58 (1950).MATHCrossRefADSGoogle Scholar
  12. 12.
    V. Z. Vlasov, Structural Mechanics of Thin Walled Three-Dimensional Systems [in Russian], Stroiizdat (1949).Google Scholar
  13. 13.
    M. I. Gorbunov-Posadov, Beams and Plates on Elastic Foundation [in Russian], Gosstroiizdat (1949).Google Scholar
  14. 14.
    P. L. Pasternak, On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants [in Russian], Gosstroiizdat, Moscow (1954).Google Scholar
  15. 15.
    H. S. Shen, “Postbuckling analysis of composite laminated plates on two-parameter elastic foundations,” Int. J. Mech. Sci., 37, No. 12, 1307–1316 (1995).MATHCrossRefGoogle Scholar
  16. 16.
    M. H. Omurtag, A. Ozutok, and A. Y. Akoz, “Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential,” Int. J. Num. Meth. Eng., 40, No. 2, 295–317 (1997).CrossRefMathSciNetGoogle Scholar
  17. 17.
    H. Matsunaga, “Vibration and stability of thick plates on elastic foundations,” ASCE. J. Eng. Mech., 126, No. 1, 27–34 (2000).CrossRefGoogle Scholar
  18. 18.
    C. P. Filipich and M. B. Rosales, “A further study about the behavior of foundation piles and beams in a Winkler–Pasternak soil,” Int. J. Mech. Sci., 44, No. 1, 21–36 (2002).MATHCrossRefGoogle Scholar
  19. 19.
    D. Zhou, Y. K. Cheung, S. H. Lo, and F. T. K. Au, “Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundations,” Int. J. Num. Meth. Eng., 59, No. 10, 1313–1334 (2004).MATHCrossRefGoogle Scholar
  20. 20.
    Z. Y. Huang, C. F. Lu, and W. Q. Chen, “Benchmark solutions for functionally graded thick plates resting on Winkler–Pasternak elastic foundations,” Compos. Struct., 85, 95–104 (2008).CrossRefGoogle Scholar
  21. 21.
    Z. Q. Cheng and S. Kitipornchai, “Membrane analogy of buckling and vibration of inhomogeneous plates,” J. Eng. Mech., ASCE, 125, No. 11, 1293–1297 (1999).CrossRefGoogle Scholar
  22. 22.
    Z. Q. Cheng and B. C. Batra, “Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plate,” J. Sound. Vibrat., 229, No. 4, 879–895 (2000).CrossRefADSGoogle Scholar
  23. 23.
    J. N. Reddy and Z. Q. Cheng, “Frequency correspondence between membranes and functionally graded spherical shallow shells of polygonal plan form,” Int. J. Mech. Sci., 44, No. 5, 967–985 (2002).MATHCrossRefGoogle Scholar
  24. 24.
    S. S. Akavci, “Analysis of thick laminated composite plates on an elastic foundation with the use of various plate theories” Mech. Compos. Mater., 44, No. 5, 445–460 (2005).CrossRefGoogle Scholar
  25. 25.
    F. Delale and F. Erdogan, “The crack problem for a nonhomogeneous plane,” J. Appl. Mech., 50, 609–614 (1983).MATHCrossRefGoogle Scholar
  26. 26.
    H. Kobayashi and K. Sonoda, “Rectangular Mindlin plates on elastic foundations,” Int. J. Mech. Sci., 31, 679–692 (1989).MATHCrossRefGoogle Scholar
  27. 27.
    K. Y. Lam, C. M. Wang, and X. Q. He, “Canonical exact solutions for Levy-plates on two-parameter foundation using Green’s functions,” Eng. Struct., 22, 364–378 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • S. Benyoucef
    • 1
  • I. Mechab
    • 1
  • A. Tounsi
    • 1
    • 2
  • A. Fekrar
    • 1
  • H. Ait Atmane
    • 1
    • 3
  • El Abbas Adda Bedia
    • 1
  1. 1.Laboratoire des Matériaux et HydrologieUniversité de Sidi Bel AbbesSidi Bel AbbesAlgérie
  2. 2.Département de génie civil, Faculté des Sciences de l’IngénieurUniversité Sidi Bel AbbesSidi Bel AbbesAlgérie
  3. 3.Département de génie civil, Faculté des Sciences de l’IngénieurUniversité Hassiba Benbouali de ChlefChlefAlgérie

Personalised recommendations