Mechanics of Composite Materials

, Volume 45, Issue 6, pp 567–576 | Cite as

Effect of fiber orientation and cross section of composite tubes on their energy absorption ability in axial dynamic loading


The crushing behavior of composite tubes in axial impact loading is investigated. Tubes of circular and rectangular cross section are simulated using an LS-DYNA software. The effect of fiber orientation on the energy absorbed in laminated composite tubes is also studied. The results obtained show that rectangular tubes absorb less energy than circular ones, and their maximum crushing load is also lower. The composite tubes with a [+θ/ -θ] lay-up configuration absorb a minimum amount of energy at θ = 15°. The simulation results for a rectangular composite tube with a [+30/–30] lay-up configuration are compared with available experimental data. Cylindrical composite tubes fabricated from woven glass/polyester composites with different lay-ups were also tested using a drop-weight impact tester, and very good agreement between experimental and numerical results is achieved.


crushing composite material circular and rectangular tubes axial impact loading, absorbed energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Thornton, “Energy absorption in composite structures,” J. Compos. Mater., 13, 247-263 (1979).CrossRefGoogle Scholar
  2. 2.
    P. Beardmore and C. F. Johnson, “The potential for composites in structural automotive applications,” Compos. Sci. Technol., 26, No. 4, 251-281 (1986).CrossRefGoogle Scholar
  3. 3.
    C. M. Kindervater and H. Georgi, “Composite strength and energy absorption as an aspect of structural crash resistance,” in: N. Jones and T. Wierzbicki (eds.), Structural Crashworthiness and Failure, Elsevier Science, Amsterdam (1993), pp. 189-263.Google Scholar
  4. 4.
    D. Hull, “A unified approach to progressive crashing in fiber reinforced composite tube,” Compos. Sci. Technol., 40, 377-421 (1991).CrossRefGoogle Scholar
  5. 5.
    H. Ha ma da and S. Ramakrishna, “Scaling effects in the energy absorption of carbon-fiber/PEEK composite tubes,” Compos. Sci. Technol., 55, No. 3, 211-221 (1995).CrossRefGoogle Scholar
  6. 6.
    H. Hamada, S. Ramakrishna, and H. Sato, “Effect of fiber orientation on the energy absorption capability of carbon fiber/PEEK composite tubes,” J. Compos. Mater., 30, No. 8, 947-963 (1996).Google Scholar
  7. 7.
    P. H. Thornton and P. J. Edwards, “Energy absorption in composite tubes,” J. Compos. Mater., 16, No. 6, 521-545 (1982).CrossRefGoogle Scholar
  8. 8.
    E. Deletombe, D. Delsart, D. Kohlgrüber, and A. F. Johnson, “Improvement of numerical methods for crash analysis in future composite aircraft design,” Aerospace Sci. Technol., 4, No. 3, 189-199 (2000).MATHCrossRefGoogle Scholar
  9. 9.
    M. A. Mc Carthy, C. G. Harte, J. F. M. Wiggenraad, A. L. P. J. Michielsen, D. Kohlgrüber, and A. Kamoulakos, “Finite element modelling of crash response of composite aerospace sub-floor structures,” Comput. Mech., 26, No. 3, 250-258 (2000).CrossRefGoogle Scholar
  10. 10.
    E. L. Fasanella, K. E. Jackson, and K. H. Lyle, “Finite element simulation of a full-scale crash test of a composite helicopter,” J. Amer. Helicopter Soc., 47, No. 3, 156-168 (2002).CrossRefGoogle Scholar
  11. 11.
    A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, P. K. Kostazos, and D. P. Papapostolou, “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modeling,” Compos. Struct., 58, No. 4, 571-582 (2002).CrossRefGoogle Scholar
  12. 12.
    Livermore Software Technology Corporation, California, USA, LS-DYNA 970 (2003).Google Scholar
  13. 13.
    J. R. Smith, L. C. Bank, and M. E. Plesha, “Preliminary study of the behavior of composite material box beams subjected to impact,” in: 6th Int. LS-DYNA Conf., De troit (2000), pp. 11-1-11-16.Google Scholar
  14. 14.
    A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, and P. K. Kostazos, “Crushing of hybrid square sandwich composite vehicle hollow bodyshells with reinforced core subjected to axial loading: numerical simulation,” Compos. Struct., 61, No. 3, 175-186 (2003).CrossRefGoogle Scholar
  15. 15.
    A. Tabiei, W. Yi, and R. Goldberg, “Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation,” Int. J. Non-Lin ear Mech., 40, No. 7, 957-970 (2005).MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • M. M. Shokrieh
    • 1
  • H. Tozandehjani
    • 1
  • M. J. Omidi
    • 1
  1. 1.Composites Research Laboratory, Mechanical Engineering DepartmentIran University of Science and TechnologyTehranIran

Personalised recommendations