Advertisement

Mechanics of Composite Materials

, Volume 45, Issue 3, pp 331–336 | Cite as

An analysis of moisture diffusion according to Fick’s law and the tensile mechanical behavior of a glass-fabric-reinforced composite

  • A. Naceri
Article

The properties of moisture diffusion parameters and their effect on the tensile mechanical behavior of a fabric composite (glass fiber/epoxy resin) in the warp and weft directions were investigated. The water up take by specimens conditioned in a humid environment under different relative humidities (0, 60, and 96% RH) at a constant temperature of 60°C was evaluated by weight gain measurements. The water absorption followed Fick’s diffusion law in the fabric composite. A comparison between the values obtained for the moisture diffusion coefficient and the equilibrium moisture content at the laboratory and those given by Loos and Springer showed that the parameters depended not only on the nature of materials, but also on environmental conditions. The effect of moisture absorption on tensile characteristics of the composite, which was tested in uniaxial tension in the warp and weft directions at constant imposed displacement rates up to failure, showed a significant reduction in the ultimate tensile strength of the specimens conditioned at 96% RH.

Keywords

Fick’s law moisture diffusion fabric-reinforced composite glass mechanical behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bergeret, I. Pires, M. Arpin, J. P. Gasca, and A. Crespy, Stability of Glass Fiber Reinforced Polyamide 66 in a Service-Related Environment: Influence of the Fiber/Matrix Interface, Eurofillers, Lodz (2001).Google Scholar
  2. 2.
    A. Chateauminois, B. Chabert, J. P. Soulier, and L. Vincent, “Hygrothermal ageing effects on the static fatigue of glass/epoxy composites,” Composites, No. 7, 547-555 (1998).Google Scholar
  3. 3.
    P. Bonniau and A. R. Bunsell, Enviromental Effects of Composites Materials, Technomic Publ. Comp., Lancaster (1984).Google Scholar
  4. 4.
    Y. C. Zchang and X. Wang, “Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubes-reinforced composites system,” J. Reinf. Plast. Compos., 25, 71-88 (2006).CrossRefADSGoogle Scholar
  5. 5.
    M. Cotinaud, P. Bonniau, and A. R. Bunsell, “The effect of water absorption on the electrical properties of galss-fibre reinforced epoxy composites,” J. Mater. Sci., 17, 867-877 (1982).CrossRefADSGoogle Scholar
  6. 6.
    G. Camino, M. P. Luda, A. Y. Polishchuk, M. Revellino, R. Blancon, G. Merle, and J. J. Martinez-Vega, “Kinetic aspects of water sorption in polyester resin glass fibers composites,” Compos. Sci. Technol., 1469-1482 (1997).Google Scholar
  7. 7.
    D. Colombini, J. J. Martinez-Vega, and G. Merle, “Influence of hygrothermal ageing and thermal treaments on the viscoelastic behaviour of DGEBA-MCDEA epoxy resin,” Polymer, 1983-1992 (2002).Google Scholar
  8. 8.
    C. H. Shen and G. S. Springer, “Moisture absorption and desorption of composite materials,” J. Compos. Mater., 10, 2-6 (1977).CrossRefGoogle Scholar
  9. 9.
    A. Naceri and A. Vautrin, “Proposition d’un modéle expérimental pour la caractérisation de la réponse mécanique d’un composite (tissu de verre/résine époxyde),” J. Phys. IV, 124, 201-206 (2005).CrossRefGoogle Scholar
  10. 10.
    A. C. Loos and G. S. Springer, Enviromental Effects of Composites Materials, Technomic Publ. Co., Westport (1981).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. Naceri
    • 1
  1. 1.Laboratory of Materials, Faculty of Sciences and EngineeringUniversity of M’silaM’silaAlgeria

Personalised recommendations