Mechanics of Composite Materials

, Volume 44, Issue 5, pp 495–504 | Cite as

Structure-stress relaxation relationship in polystyrene/fluorohectorite micro-and nanocomposites

  • S. Siengchin
  • T. N. Abraham
  • J. Karger-Kocsis

Sodium fluorohectorite (FH) was incorporated into polystyrene (PS) in amounts of 4.5 and 7 wt.% by melt mixing, with and without latex precompounding. The latex precompounding was used for the latex-mediated predispersion of FH particles. The related masterbatch was produced by mixing PS latex with the water-swellable FH, followed by drying. The dispersion of FH in PS was studied by transmission-, scanning electron-, and atomic force microscopy techniques (TEM, SEM, and AFM, respectively). The stress relaxation in the PS composites was determined in short-term isothermal tests. The latter were performed at various temperatures between 25 and 75°C. The direct melt mixing of FH with PS resulted in microcomposites, whereas the masterbatch technique gave rise to nanocomposites. The master curves (relaxation modulus vs. time), constructed by applying the time-temperature superposition principle (TTSP), showed that the Williams-Landel-Ferry (WLF) equation, the Maxwell model, and the Findley power law were fairly applicable to the experimental results obtained.


polystyrene fluorohectorite microcomposite nanocomposite stress relaxation WLF equation Maxwell and Findley power-law models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, Wiley, Chichester, UK (2000).Google Scholar
  2. 2.
    M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites preparation, properties and uses of a new class of materials,” Mater. Sci. Eng., 28, 1–63 (2000).CrossRefGoogle Scholar
  3. 3.
    M. Kawasumi, “The discovery of polymer-clay hybrids,” J. Polym. Sci. Polym. Chem., 42, 819–824 (2004).CrossRefGoogle Scholar
  4. 4.
    S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progr. Polym. Sci., 28, 1539–1641 (2003).CrossRefGoogle Scholar
  5. 5.
    S. Sinha Ray, “Rheology of polymer/layered silicate nanocomposites,” J. Ind. Eng. Chem., 12, 811–842 (2006).Google Scholar
  6. 6.
    M. Okamoto, “Polymer/layered silicate nanocomposites,” Rapra Rev. Rep., 14, Rep. 163 (2003).Google Scholar
  7. 7.
    Q. T. Nguyen and D. G. Baird, “Preparation of polymer-clay nanocomposites and their properties,” Adv. Polym. Technol., 25, 270–285 (2006).CrossRefGoogle Scholar
  8. 8.
    D. Ratna, N. R. Manoj, R. K. Singh Raman, R. Varley, and G. P. Simon, “Clay-reinforced epoxy nanocomposites,” Polym. Int., 52, 1403–1407 (2003).CrossRefGoogle Scholar
  9. 9.
    R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, “Kinetics of polymer melt intercalation,” Macromolecules, 28, 8080–8085 (1995).CrossRefADSGoogle Scholar
  10. 10.
    O. Becker, Y. B. Cheng, R. J. Varley, and G. P. Simon, “Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume,” Macromolecules, 36, 1616–1625 (2003).CrossRefADSGoogle Scholar
  11. 11.
    H. Z. Friedlander and C. R. Frink, “Organized polymerization. III. Monomers intercalated in montmorillonite,” Polym. Lett., 2, 475–479 (1964).CrossRefGoogle Scholar
  12. 12.
    J. Zhu, A. B. Morgan, F. J. Lamelas, and C. A. Wilke, “Fire properties of polystyrene-clay nanocomposites,” Chem. Mater., 13, 3774–3780 (2001).CrossRefGoogle Scholar
  13. 13.
    B. Hoffmann, C. Dietrich, R. T. Thomann, C. Friedrich, and R. Mülhaupt, “Morphology and rheology of polystyrene nanocomposites based upon organoclay,” Macromol. Rapid Commun., 21, 57–61 (2000).CrossRefGoogle Scholar
  14. 14.
    T. H. Kim, L. W. Jang, D. C. Lee, H. J. Choi, and M. S. Jhon, “Synthesis and rheology of intercalated polystyrene/Na+-montmorillonite nanocomposites,” Macromol. Rapid Commun., 23, 191–195 (2002).CrossRefGoogle Scholar
  15. 15.
    J. Shen, X. Cao, and L. Lee, “Synthesis and foaming of water expandable polystyrene-clay nanocomposites,” Polymer, 47, 6303–6310 (2006).CrossRefGoogle Scholar
  16. 16.
    S. Siengchin, J. Karger-Kocsis, A. A. Apostolov, and R. Thomann, “Polystyrene-fluorohectorite nanocomposites prepared by melt mixing with and with out latex precompounding: structure and mechanical properties,” J. Appl. Polym. Sci., 106, 248–254 (2007).CrossRefGoogle Scholar
  17. 17.
    W. S. Chow and Z. A. Mohd Ishak, “Mechanical, morphological and rheological properties of polyamide 6/organo-montmorillonite nanocomposites,” Express Polym. Lett., 1, 77–83 (2007).CrossRefGoogle Scholar
  18. 18.
    A. M. Manich, M. D. de Castellar, B. Gonzalez, M. A. Ussman, and A. Marsal, “Influence of leather stretching to gain area yield on its stress-relaxation behavior,” J. Appl. Polym. Sci., 102, 6000–6008 (2006).CrossRefGoogle Scholar
  19. 19.
    J. D. Ferry, Viscoelastic Properties of Polymers, Wiley & Sons, New York (1980).Google Scholar
  20. 20.
    L. I. Palade, V. Verney, and P. Attane, “Time-temperature superposition and linear viscoelasticty of polybutadienes,” Macromolecules, 28, 7051–7057 (1995).CrossRefADSGoogle Scholar
  21. 21.
    W. N. Findley, J. S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover Public., New York (1976).MATHGoogle Scholar
  22. 22.
    O. Starkova, J. L. Yang, and Z. Zhang, “Application of time-stress superstition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes,” Compos. Sci. Technol., 67, 2691–2698 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • S. Siengchin
    • 1
  • T. N. Abraham
    • 1
  • J. Karger-Kocsis
    • 1
  1. 1.Institute for Composite MaterialsKaiserslautern University of TechnologyKaiserslauternGermany

Personalised recommendations