Mechanics of Composite Materials

, Volume 44, Issue 4, pp 325–330 | Cite as

Compromise optimization of a rectangular composite plate subjected to biaxial thermal loading and buckling under the action of shear

  • G. Teters


The compromise optimization of the structure and geometry of a laminated anisotropic composite plate subjected to biaxial thermal shear loading is considered. From the known properties of the monolayer and given values of a variable structural parameter, the thermoelastic properties of the layered composite are determined. The optimization criteria — the critical shear load and the longitudinal and transverse thermal stresses — depend on two variable design parameters of composite properties and temperature. In the space of optimization criteria, the domain of allowable solutions and the Pareto-optimal subregion are found.


compromise optimization composite plate thermal action biaxial loading 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Teters and A. Kregers, “Optimization of a composite plate buckling under thermal action with account of reliability,” Mech. Compos. Mater., 36, No. 6, 453–458 (2000).CrossRefGoogle Scholar
  2. 2.
    G. A. Teters, “Multicriteria optimization of a composite cylindrical shell subjected to thermal and dynamic actions,” Mech. Compos. Mater., 40, No. 6, 489–494 (2004).CrossRefGoogle Scholar
  3. 3.
    G. Teters, “Multicriteria optimal design of a rectangular composite plate subjected to biaxial and thermal loading,” Mech. Compos. Mater., 41, No. 5, 461–466 (2005).CrossRefGoogle Scholar
  4. 4.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials [in Russian], Zinatne, Riga (1974).Google Scholar
  5. 5.
    V. V. Vasil’ev and Yu. M. Tarnopol’skii (eds.), Composite Materials. Handbook [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  6. 6.
    P. F. Papkovich, Works in the Structural Mechanics of Ships. Vols. 1–4 [in Russian], Sudpromgiz, Leningrad (1962–1963).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • G. Teters
    • 1
  1. 1.Institute of Polymer MechanicsUniversity of LatviaRigaLatvia

Personalised recommendations