Mechanics of Composite Materials

, Volume 44, Issue 1, pp 87–92 | Cite as

Thermal conductivity of micro-and nanostructural epoxy composites at low temperatures

  • L. E. Evseeva
  • S. A. Tanaeva


The thermal conductivity of epoxy composites containing not only the traditional fillers quartz, talc, carbon black, and aerosil, but also the very promising carbon nanomaterials is investigated. Two kinds of carbon nanomaterials — multi-wall (MWNT) and single-wall (SWNT) carbon nanotubes — were considered. The influence of their content (from 0.05 to 3.0 wt.%) on the thermal conductivity of MWNT-epoxy composites was studied. The thermal conductivity of epoxy composites was examined in the temperature range from −150 to 150°C. It was found that the introduction of 0.1–1.0 wt.% MWNT enhanced the thermal conductivity of pure epoxy resin by about 40%. A further increase in content of the nanotubes decreased the thermal conductivity. This can be explained by the worsening of nanotube dispersion at their high concentrations. The maximum growth in the thermal conductivity of the epoxy composites, on the entire range of temperatures considered, was observed at a 0.1 wt.% content of MWNT.


thermal conductivity carbon nanotubes epoxy nanocomposites microfillers nanofillers low temperatures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. B. Trostyanskaya, “Contact zone between filler and polymer matrix in plastics and composite materials,”
  2. 2.
    S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56–58 (1991).CrossRefGoogle Scholar
  3. 3.
    V. Vretenar, V. Skakalova, L. Kubicar, and S. Roth, “Thermophysicaal properties of single wall carbon nanotubes,” in: EuroMat-2003, Lausanne, Switzerland, September 1–5, U2-1560 (2003).Google Scholar
  4. 4.
    J. Hone, M. Whitney, C. Piskoti, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Phys. Rev. B, 59, No. 4, R2514–2516 (1999).CrossRefGoogle Scholar
  5. 5.
    J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett., 77, No. 5, 666–668 (2000).CrossRefGoogle Scholar
  6. 6.
    J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, and R. E. Smalley, “Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties,” J. Appl. Phys., 93, No. 4, 2157–2163 (2003).CrossRefGoogle Scholar
  7. 7.
    M. J. Biercuk, M. C. Llaguno, Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fisher, “Carbon nanotube composites for thermal management,” Appl. Phys. Lett., 80, 2767–2769 (2002).CrossRefGoogle Scholar
  8. 8.
    C.-W. Nan, Z. Shi, and Y. Lin, “A simple model for thermal conductivity of carbon nanotube-based composites,” Chem. Phys. Lett., 375, 666 (2003).CrossRefGoogle Scholar
  9. 9.
    Y. S. Song and J. R. Youn, “Properties of epoxy nanocomposites filled with carbon nanomaterials,” in: 12th POLYCHAR World Forum Adv. Mater., Portugal, January 6–9 (2004).Google Scholar
  10. 10.
    L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Single-walled carbon nanotube-polymer composites: strength and weakness,” Adv. Matter., 12, No. 10, 750–753 (2000).CrossRefGoogle Scholar
  11. 11.
    A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, “Mechanical and electrical properties of an MWNT/epoxy composite,” Compos. Sci. Technol., 62, 1993–1998 (2002).CrossRefGoogle Scholar
  12. 12.
    K. T. Lau, S. Q. Shi, and H. M. Cheng, “Micro-mechanical properties and morphological observation on fracture surface of carbon nanotube composites pre-treated at different temperatures,” Comp. Sci. Technol., 63, 1161–1164 (2003).CrossRefGoogle Scholar
  13. 13.
    S. A. Zhdanok, I. F. Buyakov, A. P. Chernukho, A. V. Krauklis, A. P. Solntsev, and A. E. Shashkov, “Carbon nanotubes synthesis under nonequilibrium conditions,” in: Nanotechnology in Physics, Chemistry and Biotechnology, St-Petersburg (2002).Google Scholar
  14. 14.
    E. S. Platunov, Thermophysical Measurements in a Monotonic Mode [in Russian], Energiya, Moscow (1972).Google Scholar
  15. 15.
    A. A. Malygin, “Chemistry of surface and nanotechnology: interrelation and prospects,” Soros. Obrazovat. Zh., 8, No. 1, 32–38 (2004).Google Scholar
  16. 16.
    M. C. Weisenberger, E. A. Grulke, D. Jacques, T. Rantell, and R. Andrews, “Enhanced mechanical properties of polyacrylonitrile,” J. Nanosci. Nanotech., 3, 535–539 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • L. E. Evseeva
    • 1
  • S. A. Tanaeva
    • 1
  1. 1.Lykov Institute of Heat and Mass TransferNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations