Mechanics of Composite Materials

, Volume 42, Issue 5, pp 477–484 | Cite as

An analysis of contact deformation of auxetic composites

  • S. V. Shil’ko
  • E. M. Petrokovets
  • Yu. M. Pleskachevskii


The adaptive mode of frictional interaction has been studied as a self-locking effect upon contact deformation of isotropic and anisotropic auxetic materials with a negative Poisson ratio. This effect manifests itself in the fact that the bearing capacity of the joint rises with increasing shear load. In particular, the parameters of stress state (contact load, tangential stresses, slippage, etc.) were determined for a double-lap joint under conditions of compression with or with out shear. The contact interaction was analyzed by the finite-element method for three profiles of symmetrically located contact elements (plane, cylindrical, and wedge-shaped). The Poisson ratio was varied within the range theoretically admissible for isotropic elastic media. Analogous calculations were also performed for a joint with a deformed element made of an anisotropic auxetic composite, whose reinforcement angle was varied. The maximum loads, tangential stresses, and slippage are obtained as nonlinear functions of Poisson ratio (in the isotropic case) and reinforcement angle of the composite material. The stress concentration and the increased ultimate shear forces are also estimated.


adaptive mode contact deformation auxetic materials self-locking effect finite-element simulation anisotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Konek, K. Voitsekhovskii, Yu. M. Pleskachevskii, and S. V. Shilko, “Materials with a negative Poisson ratio (a review),” Mekh. Kompozit. Mater. Konstr., 10, No. 1, 35–69 (2004).Google Scholar
  2. 2.
    A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Dover, New York (1944).Google Scholar
  3. 3.
    Yu. M. Pleskachevskii, S. V. Shil’ko, and S. V. Stel’makh, “Stages of development and levels of organization of the structure of materials: adaptive composites,” Dokl. Belar. Nats. Akad. Nauk, 43, No. 5, 119–123 (1999).Google Scholar
  4. 4.
    S. V. Shilko, S. V. Stelmakh, D. A. Chernous, and Yu. M. Pleskatchevskii, “Structural simulation of supercompressible materials,” J. Theor. Appl. Mech., 28, No. 1, 87–96 (1998).Google Scholar
  5. 5.
    S. V. Shilko and Yu. M. Pleskatchevskii, “The mathematical simulation of free boundary evolution in frictional contact,” Boundary Elem. Commun. J., 12, No. 2/3, 18–33 (2001).Google Scholar
  6. 6.
    G. Wei and S. F. Edvards, Phys. Rev. E, 58, No. 5b, 6173–6181 (1998).CrossRefGoogle Scholar
  7. 7.
    B. S. Kolupaev, Yu. S. Lipatov, V. I. Nikitchuk, N. A. Bordyuk, and O. M. Voloshin, Inzh.-Fiz. Zh., 67, No. 5, 726–733 (1996).Google Scholar
  8. 8.
    T. Akasaka, “Elastic composites,” in: T.-V. Chu and F. Ko (eds.), Woven Structural Composites [Russian translation], Mir, Moscow (1991).Google Scholar
  9. 9.
    K. Gerakovich, “Edge effects in layered composites,” in: Yu. M. Tarnopol’skii (ed.), Applied Mechanics of Composites [in Russian], Mir, Moscow (1989), pp. 295–341.Google Scholar
  10. 10.
    M. Miki and Y. Morotsu, “The peculiar behavior of the Poisson’s ratio of laminated fibrous composites,” JSME Int. J., 32, 67–72 (1989).Google Scholar
  11. 11.
    G. W. Milton, “Composite materials with Poisson’s ratios close to −1,” J. Mech. Phys. Solids, 40, 1105–1137 (1992).CrossRefGoogle Scholar
  12. 12.
    P. S. Theocaris, G. E. Stavroulakis, and P. D. Panagiotopoulus, “The homogenization method for the study of variation of Poisson’s ratio in fiber composites,” Arch. Appl. Mech., 67, 274–286 (1997).CrossRefGoogle Scholar
  13. 13.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Rigid Polymer Materials [in Russian], Zinatne, Riga (1972).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. V. Shil’ko
    • 1
  • E. M. Petrokovets
    • 1
  • Yu. M. Pleskachevskii
    • 1
  1. 1.Belyi Metal-Polymer Research InstituteBelarus National Academy of SciencesGomel’Belarus

Personalised recommendations