Advertisement

Mechanics of Composite Materials

, Volume 42, Issue 1, pp 45–54 | Cite as

A nanocomposite based on a styrene-acrylate copolymer and native montmorillonite clay 1. Preparation, testing, and properties

  • R. D. Maksimov
  • S. Gaidukovs
  • M. Kalnins
  • J. Zicans
  • E. Plume
Article

Abstract

The preparation of a polymer nanocomposite by compounding an aqueous polymer emulsion with an aqueous dispersion of montmorillonite clay is described. A styrene-acrylate copolymer emulsion and a purified native montmorillonite clay from Latvian deposits are used. An X-ray diffraction analysis and differential scanning calorimetric thermograms are shown. Data on the influence of montmorillonite concentration on the tensile stress-strain diagram, elasticity, yield stress, breaking stress, and ultimate elongation of the processed nanocomposite material are obtained.

Keywords

styrene-acrylate copolymer clay polymer nanocomposite X-ray diffraction analysis differential scanning calorimetry tension curve strength elastic modulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Komarneni, “Nanocomposites,” J. Mater. Chem., 2, No. 12, 1219–1230 (1992).CrossRefGoogle Scholar
  2. 2.
    V. A. Struk, A. V. Rogachev, A. A. Skaskevich, O. V. Kholodilov, and M. Lyuty, “Nanomaterials and nanotechnologies for mechanical engineering (review),” Mater. Tekhnol. Instrum., 7, No. 3, 53–65 (2002).Google Scholar
  3. 3.
    T. J. Pinnavaia and G. W. Beall (eds.), Polymer-Clay Nanocomposites, John Wiley & Sons, Chichester-New York (2001).Google Scholar
  4. 4.
    R. Krishnamoorti and R. A. Vaia (eds.), Polymer Nanocomposites: Synthesis, Characterization, and Modeling, American Chemical Society, Washington (2001).Google Scholar
  5. 5.
    M. Alexandre and Ph. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. Sci. Eng, 28, 1–63 (2000).Google Scholar
  6. 6.
    A. K. Mikitaev, A. A. Kaladzhyan, O. B. Lednev, and M. A. Mikitaev, “Nanocomposite polymer materials based on organoclays,” Plast. Massy, No. 12, 45–50 (2004).Google Scholar
  7. 7.
    S. M. Lomakin and G. E. Zaikov, “Polymer nanocomposites of lowered combustibility based on layered silicates,” Vysokomol. Soed., 47B, No. 1, 104–120 (2005).Google Scholar
  8. 8.
    Xiang Ling Ji, Jiao Kai Jing, Wei Jiang, and Bing Zheng Jiang, “Tensile modulus of polymer nanocomposites,” Polym. Eng. Sci., 42, No. 5, 983–993 (2002).CrossRefGoogle Scholar
  9. 9.
    T. D. Fornes and D. R. Paul, “Modeling the properties of nylon 6/clay nanocomposites using composite theories,” Polymer, 44, 4993–5013 (2003).Google Scholar
  10. 10.
    N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes, and R. E. Cohen, “Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle,” Polymer, 45, 487–506 (2004).CrossRefGoogle Scholar
  11. 11.
    A. N. Wilkinson, P. Matikainen, G. C. Lees, C. M. Liauw, Z. Man, and J. L. Stanford, “Structure and mechanical properties of melt-intercalated polyamide 6-montmorillonite nanocomposites,” in: Proc. Joint Meeting: 8th Europ. Symp. Polymer Blends and Eurofillers 2005, Belgium, Bruges (2005), CD-version, Paper No. F/155.Google Scholar
  12. 12.
    M. Zelenkova Myskova, J. Zelenka, V. Spacek, and F. Socha, “Properties of epoxy systems with clay nanocomposites,” Mech. Compos. Mater., 39, No. 2, 111–122 (2003).Google Scholar
  13. 13.
    J.-J. Luo and I. M. Daniel, “Characterization and modeling of mechanical behavior of polymer/clay nanocomposites,” Compos. Sci. Technol., 63, 1607–1616 (2003).CrossRefGoogle Scholar
  14. 14.
    M. A. Osman, V. Mittal, and H. R. Lusti, “The aspect ratio and gas permeation in polymer-layered silicate nanocomposites,” Macromol. Rapid Commun., 25, 1145–1149 (2004).Google Scholar
  15. 15.
    M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, “Epoxy-layered silicate nanocomposites and their gas permeation,” Macromolecules, 37, 7250–7257 (2004).CrossRefGoogle Scholar
  16. 16.
    Ph. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Nasegawa, and A. Usuki, “A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites,” Polymer, 42, 9633–9640 (2001).CrossRefGoogle Scholar
  17. 17.
    X. Liu and Q. Wu, “PP/clay nanocomposites prepared by grafting-melt intercalation,” Polymer, 42, 10013–10019 (2001).Google Scholar
  18. 18.
    E. M. Antipov, A. A. Barannikov, V. A. Gerasin, B. F. Shklyaruk, L. A. Tsamalashvili, H. R. Fisher, and I. V. Razumovskaya, “Structure and deformational behavior of nanocomposites based on polypropylene and modified clays,” Vysokomol. Soed., 45A, No. 11, 1885–1899 (2003).Google Scholar
  19. 19.
    E. M. Antipov, M. A. Guseva, V. A. Gerasin, Yu. M. Korolev, A. V. Rebrov, H. R. Fisher, and I. V. Razumovskaya, “Structure and deformational behavior of nanocomposites based on low-density polyethylene and modified clays,” Vysokomol. Soed., 45A, No. 11, 1874–1884 (2003).Google Scholar
  20. 20.
    N. Yu. Kovaleva, P. N. Brevnov, V. G. Grinev, S. P. Kuznetsov, I. V. Pozdnyakov, S. N. Chvalun, E. A. Sinevich, and L. A. Novokshenova, “Synthesis of nanocomposites based on polyethylene and layered silicates by the method of intercalation polymerization,” Vysokomol. Soed., 46A, No. 6, 1045–1051 (2004).Google Scholar
  21. 21.
    J.-X. Li, J. Wu, and C.-M. Chan, “Thermoplastic nanocomposites,” Polymer, 41, 6935–6937 (2000).Google Scholar
  22. 22.
    K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, “Synthesis and properties of polyimide-clay hybrid,” J. Polym. Sci. Pt. A, Polym. Chem., 31, 2493–2498 (1993).Google Scholar
  23. 23.
    T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, “On the nature of polyimide-clay hybrid composites, ” Chem. Mater., 6, 573–575 (1994).Google Scholar
  24. 24.
    R. Magaraphan, W. Lilaynthalert, A. Sirivat, and J. W. Schwank, “Preparation, structure, properties, and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites,” Compos. Sci. Technol., 61, 1253–1264 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Okamoto, S. Morita, Y. H. Kim, T. Kotaka, and H. Tateyama, “Dispersed structure change of smectic clay/poly (methyl methacrylate) nanocomposites by copolymerization with polar comonomers,” Polymer, 42, 1201–1206 (2001).Google Scholar
  26. 26.
    W. Chen, Q. Xu, and R. Z. Yuan, “The influence of polymer state on the electrical properties of polymer/layered-silicate nanocomposites,” Compos. Sci. Technol., 61, 935–939 (2001).Google Scholar
  27. 27.
    Ph. B. Messersmith and E. P. Giannelis, “Synthesis and barrier properties of poly(ɛ-caprolactone)-layered silicate nanocomposites,” J. Polym. Sci. Pt. A, Polym. Chem., 33, 1047–1057 (1995).Google Scholar
  28. 28.
    R. A. Sheptalin, E. V. Koverzanova, S. M. Lomakin, and V. S. Osipchik, “Particular features of combustibility and thermal destruction of a nanocomposite of elastic polyurethane foam based on organo-modified layered alumosilicate,” Plast. Massy, No. 4, 20–26 (2004).Google Scholar
  29. 29.
    I. A. Tutorskii and B. V. Pokid’ko, “Elastomeric nanocomposites with layered silicates. II. Properties of nanocomposites,” Kauchuk Resina, No. 6, 33–36 (2004).Google Scholar
  30. 30.
    W. E. Worrall, Clays and Ceramic Raw Materials, Applied Science Publishers Ltd., London (1975).Google Scholar
  31. 31.
    A. I. Avgustinnik, Ceramics [in Russian], Stroyizdat, Moscow (1975).Google Scholar
  32. 32.
    J. Freimanis, A. Actins, A. Stinkule, R. Svinka, and V. Svinka, “Organoclay from some Latvian clays,” Latv. Kim. Z., No. 1, 69–77 (2003).Google Scholar
  33. 33.
    J. L. Bonczek, W. G. Harris, and P. Nkedi-Kizza, “Monolayer to bilayer transitional arrangements of hexadecyltrimethylammonium cations on Na-montmorillonite,” Clays Clay Miner., 50, No. 1, 11–17 (2002).CrossRefGoogle Scholar
  34. 34.
    Yu. S. Lipatov, Physicochemical Fundamentals of Polymer Filling [in Russian], Khimiya, Moscow (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • R. D. Maksimov
    • 1
  • S. Gaidukovs
    • 2
  • M. Kalnins
    • 2
  • J. Zicans
    • 2
  • E. Plume
    • 1
  1. 1.Institute of Polymer MechanicsUniversity of LatviaRigaLatvia
  2. 2.Institute of Polymer MaterialsRiga Technical UniversityRigaLatvia

Personalised recommendations