Mechanics of Composite Materials

, Volume 41, Issue 2, pp 139–152 | Cite as

Design of Steel-Composite Multirim Cylindrical Flywheels Manufactured by Winding with High Tensioning and in situ Curing. 1. Basic Relations

  • G. Portnov
  • A.-N. Uthe
  • I. Cruz
  • R. P. Fiffe
  • F. Arias


The possibility of using force winding coupled with in situ curing to increase the energy storage capacity of hybrid steel-composite cylindrical flywheels is estimated and analyzed. Relations describing the rotational, thermal, and winding stresses are considered and discussed. These relations are used for a numerical analysis of the stress state and energy capacity of hybrid flywheels in the second part of the paper.


hybrid flywheel winding tensioning in situ curing stress state energy storage capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings. Flywheel Technology Symposium, November 10–12, 1975, Lawrence Livermore Laboratory, Berkeley, California (1975).Google Scholar
  2. 2.
    Proceedings. Flywheel Technology Symposium, October 5–7, 1977, U.S. Department of Energy, San Francisco, California (1977).Google Scholar
  3. 3.
    Proceedings. Flywheel Technology Symposium, October 1980, U.S. Department of Energy, ASME, LLNL, Scottsdale, Arizona (1980).Google Scholar
  4. 4.
    Proceedings. Flywheel Energy Storage Workshop, October 1995, CONF-9510242, U.S. Department of Energy (1995).Google Scholar
  5. 5.
    S. Ashley, Mech. Eng., 115, No.10, 44–51 (1993).Google Scholar
  6. 6.
    B. Koch, Electr. World, 44–47 (December 1997).Google Scholar
  7. 7.
    A Summary of the State of the Art of Superconducting Magnetic Energy Storage Systems, Flywheel Energy Storage Systems and Compressed Air Energy Storage Systems. Sandia Report, SAND99-1854 (July 1999).Google Scholar
  8. 8.
    J. G. Bitterly, “Technology. past, present and 21st century projections,” IEE AES Systems Mag., 13–16 (August 1998).Google Scholar
  9. 9.
    C. E. Bakis, “Batteries for the 21st century: composite flywheels,” Eng. Mater. Systems, 1, No.1 (1998).Google Scholar
  10. 10.
    G. Genta, Kinetic Energy Storage, Butterworths & Co. Ltd. (1985).Google Scholar
  11. 11.
    K. Shintarou, “Flywheel,” in: Comprehensive Composite Material. Vol. 6, Ch. 6.29, Elsevier Sci. Ltd., (2000), pp. 571–580.Google Scholar
  12. 12.
    E. D. Reedy Jr., “A composite-rim flywheel design,” SAMPE Quart., 1–6 (April 1978).Google Scholar
  13. 13.
    S. M. Arnold, A. F. Saaleb, and N. R. Al-Zoubi, Deformation and Life Analysis Of Composite Flywheel Disk And Multi-Disk Systems, NASA/TM-2001-210578 (January 2001).Google Scholar
  14. 14.
    S. K. Ha and D.-J. Kim, “Optimal design of a hybrid composite flywheel rotor using finite element methods,” in: Proceedings of the 44th SAMPE Symposium, May 23–27, 1999, SAMPE, Covina, CA (1999), pp. 2119–2131.Google Scholar
  15. 15.
    D. M. Ries and J. A. Kirk, “Design and manufacturing for a composite multi-ring flywheel,” in: Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, August 3–7, 1992. Vol. 4, San Diego, CA (1992), pp. 43–47.Google Scholar
  16. 16.
    R. A. Huntington, J. A. Kirk, Stress Redistribution for Multi-Ring Flywheel, ASME Publication 77-WA/DE-26, (1977).Google Scholar
  17. 17.
    R. F. Post and S. F. Post, “Flywheels,” Scient. American, 229, No.6, 17–23 (December 1973).Google Scholar
  18. 18.
    W. M. Brobeck, “Flywheel development for the electric power research institute,” in: Proceedings. Flywheel Technology Symposium, CONF-771053, October 1977, U.S. Department of Energy (1977), pp. 183–192.Google Scholar
  19. 19.
    C. W. Gabrys, C. E. Bakis, “Design and testing of composite flywheel rotors,” in: S. J. Hooper, (ed.), Composite Materials: Testing and Design. Vol. 13, ASTM STP 1242, ASTM (1997), pp. 1–22.Google Scholar
  20. 20.
    S. K. Ha and D.-J. Kim, Optimum Design of Multi-Rim Composite Flywheel Rotor Using a Modified Generalized Plane Strain Assumption, KEPRI Technical Report TR.96TJ48.E2000.199, 1999.5.Google Scholar
  21. 21.
    I. Cruz, F. Arias, R. P. Giffe, L. Garsia Tabares, J. I. Iglesias, Marcos Lafoz, I. V. Marquez de Prado, and G. Portnov, “Design, construction, and test of a new 50-kW high-speed flywheel for wind/disel systems application,” in: Proceedings. European Wind Energy Conference, 16–19 June, 2003, Madrid (2003), pp. 10.Google Scholar
  22. 22.
    S. G. Lehnitskii, Anisotropic Plates [in Russian], Moscow (1957).Google Scholar
  23. 23.
    V. V. Bolotin and K. S. Bolotina, “Thermoelastic problem of a circular cylinder of reinforced multilayer material,” Polym. Mech., 3, No.1, 93–96 (1967).CrossRefGoogle Scholar
  24. 24.
    G. G. Portnov, “Assesment of the energy storage capacity of rotating bodies by integral characteristics of their stress state,” Probl. Prochn., No. 2, 7–12 (1987).Google Scholar
  25. 25.
    C. Kirchner Lapp, “Design alowable substantion,” in: S. T. Peters (ed.), Handbook of Composites, Chapman & Hall, London (1998), pp. 758–777.Google Scholar
  26. 26.
    R. V. Southwell, An Introduction to the Theory of Elasticity for Engineers and Physicists, Oxford, 1936, pp.510Google Scholar
  27. 27.
    Y. M. Tarnopol’skii and G. G. Portnov, “Variation of prestress in filament-wound glass-reinforsed plastics,” Polym. Mech., 2, No.2, 172–175 (1966).CrossRefGoogle Scholar
  28. 28.
    C. Y. Liu and C. C. Chamis, “Residual stresses in filament wound laminates and optimum programmed winding tension,” in: Proceedings of 20th Annual Technical Conference, Section 5-D, Reinforced Plastics Div., Soc. Plastics Ind., New York (1965), pp. 1–10.Google Scholar
  29. 29.
    V. L. Blagonadezin, V. P. Nikolaev, and V. G. Perevozhchikov, “Investigation of the transverse compliance of wound GRP products,” in: V.V. Bolotin (ed.), Transactions of Moscow Institute for Energy. Dynamic and Strength of Machines, Iss. 101 [in Russian] (1972), pp. 36–40.Google Scholar
  30. 30.
    S. R. White and C. Kim, “A simultaneous lay-up and in situ cure process for thick composites,” in: Proceedings of the American Society for Composites, 7th Technical Conference, Technomic, Lancaster, PA (1992), pp. 80–89.Google Scholar
  31. 31.
    V. N. Korotkov, Y. A. Chekanov, and B. A. Rozenberg, “The simultaneous process of filament winding and curing for polymer composites,” Compos. Sci. Technol., 47, 383–388 (1993).CrossRefGoogle Scholar
  32. 32.
    C. W. Gabrys and C. E. Bakis, “Fabrication of thick filament wound carbon epoxy rings using in situ curing: manufacturing and quality,” in: Proceedings of the American Society for Composites, 9th Technical Conference, September 20–22, 1994, Delaware (1994), pp. 1090–1097.Google Scholar
  33. 33.
    C. Kim, H. Teng, I. Tucker, and S. R. White, “The continuous curing process for thermoset polymer composites. Pt. 1. Modelling and demonstration,” J. Compos. Mater., 29, 1222–1253 (1995).Google Scholar
  34. 34.
    C. Kim and S. R. White, “Continuous curing and induced thermal stresses of a thick filament wound composite cylinder,” J. Reinf. Plast. Compos., 20, No.2 (2001).Google Scholar
  35. 35.
    D. J. O’Brien, P. T. Mather, and S. R. White, “Viscoelastic properties of an epoxy resin during cure, ” J. Compos. Mater., 35, No.10 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • G. Portnov
    • 1
  • A.-N. Uthe
    • 2
  • I. Cruz
    • 3
  • R. P. Fiffe
    • 3
  • F. Arias
    • 3
  1. 1.Institute of Polymer MechanicsUniversity of LatviaRigaLatvia
  2. 2.Technical University of DresdenDresdenGermany
  3. 3.Research Center for Energy, Enviroment, and Technology, Department of Renewable Energies (CIEMAT-DER)MadridSpain

Personalised recommendations