Mechanics of Composite Materials

, Volume 40, Issue 6, pp 473–488 | Cite as

Nonaxisymmetric thermal stress state of laminated rotational bodies of orthotropic materials under nonisothermic loading

  • V. G. Savchenko
  • Yu. N. Shevchenko


A procedure for numerical investigation of nonaxisymmetric temperature fields and the elastic stress-strain state of laminated rotational bodies of cylindrically and rectilinearly orthotropic materials under nonisothermal loading is proposed. The deformation of orthotropic materials is described by the equations of anisotropic elasticity theory. The equations of state are written in the form of Hooke’s law for homogeneous materials, with additional terms which take into account the thermal deformation, changes in the mechanical properties of materials in the circumferential direction, and their dependence on temperature. A semianalytic finite-element method in combination with the method of successive approximations is used. An algorithm for numerical solution of the corresponding nonlinear boundary problem is elaborated, which is realized as a package of applied FORTRAN programs. Some numerical results are presented.


nonaxisymmetric thermoelasticity laminated rotational bodies orthotropic materials temperature strain stress semianalytic finite-element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lekhnitskii, S. G. 1977Elasticity Theory of Anisotropic BodiesNaukaMoscow[in Russian]Google Scholar
  2. 2.
    Sakharov, A. S., Gondlyakh, A. V., Mel’nikov, S. L., Snitko, A. N. 1989Numerical modeling of processes of failure of multilayered composite shellsMech. Compos. Mater.25337342Google Scholar
  3. 3.
    Shevchenko, Yu. N., Piskun, V. V., Kovalenko, V. A. 1992Elastoplastic state of axisymmetrically loaded layered rotational bodies of isotropic and orthotropic materialsPrikl. Mekh.283139Google Scholar
  4. 4.
    Guz’, A. N., Maksimyuk, V. A., Chernyshenko, I. S. 2001Boundary-value problems of the theory of thin and nonthin orthotropic shells with account of nonlinearly elastic properties and low shear rigidity of composite materialsMech. Compos. Mater.375560Google Scholar
  5. 5.
    Grigorenko, Ya. M., Vasilenko, A. T. 2001The effect of inhomogeneity of elastic properties on the stress state in composite cylindrical panelsMech. Compos. Mater.378590Google Scholar
  6. 6.
    Merzlyakov, V. A., Galishin, A. Z. 2002Calculation of the thermoelastoplastic nonaxisymmetric stress-strain state of layered orthotropic shells of revolutionMech. Compos. Mater.382540Google Scholar
  7. 7.
    Guz, A. N., Maksimyuk, V. A., Chernyshenko, I. S. 2002Numerical stress-strain analysis of shells including the nonlinear and shear properties of compositesInt. Appl. Mech.3812201228Google Scholar
  8. 8.
    Piskunov, V. G., Prisyazhnyuk, V. K., Sipetov, A. V. 2003A generalized non-classical model of stress-strain state in the problems of statics, dynamics, and contact interaction of layered plates and shellsMech. Compos. Mater.39137148Google Scholar
  9. 9.
    A. N. Guz’ (ed.), Composite Mechanics. In 12 Vols. Vol. 11. Ya. M. Grigorenko, Yu. N. Shevchenko, V. G. Savchenko, et al. (eds.), Numerical Methods [in Russian], “ASK,” Kiev (2002).Google Scholar
  10. 10.
    Savchenko, V. G., Shevchenko, Yu. N. 2000Spatial termoviscoplastic problemsInt. Appl. Mech.3613991433Google Scholar
  11. 11.
    Yu. N. Shevchenko and V. G. Savchenko, Termoviscoplasticity [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  12. 12.
    S. G. Lekhnitskii, Anisotropic Plates [in Russian] Moscow (1957).Google Scholar
  13. 13.
    Pardoen, G. C. 1995Improved structural analysis technique for orthogonal weave carbon-carbon materialsAIAA J.13756761Google Scholar
  14. 14.
    Savchenko, V. G. 2003Influence of the direction of principal anisotropy in a rectilinearly orthotropic material on the stress state of a compound solid of revolution subject to nonaxisymmetric heatingInt. Appl. Mech.39713720Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • V. G. Savchenko
    • 1
  • Yu. N. Shevchenko
    • 1
  1. 1.Timoshenko Institute of MechanicsUkrainian National Academy of SciencesKievUkraine

Personalised recommendations