Reduction of urban heat island and associated greenhouse gas emissions

Abstract

The reduction of urban heat island (UHI) and carbon emission is of great importance for thermal environment of urban residential areas. This paper aimed to establish a method to analyze the effect of different underlying surface layouts on the reduction of heat island intensity and carbon emission. Taking Tianjin, China, as a case study area, a computational fluid dynamics (CFD) model, satellite-based remote sensing retrieval technology, and orthogonal experimental design were performed to investigate and quantify the performance of mitigation strategies (i.e., urban green space or water body, cool/high reflectivity pavement, and reflective roofs and facades) on UHI. The results indicated that urban green space is the most natural and effective mitigation strategy, while the widespread application of cool/high reflectivity materials is suggested as a mitigation strategy for building height more than 10 m above the ground. Application of urban water body is the next preferred strategy for air at 1.5 m pedestrian level. Green roofs, rainwater gardens, and permeable brick pavements are also more feasible in high-density cities for mitigating the UHI effect. The above mitigation and adaptation strategies of community scale can be acted on UHI and as a  global urban climate change response.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aflaki A, Mirnezhad M, Ghaffarianhoseini A, Ghaffarianhoseini A, Omrany H, Wang Z-H, Akbari H (2017) Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 62:131–145. https://doi.org/10.1016/j.cities.2016.09.003

    Article  Google Scholar 

  2. Akbari H, Kolokotsa D (2016) Three decades of urban heat islands and mitigation technologies research. Energy and Buildings 133:834–842. https://doi.org/10.1016/j.enbuild.2016.09.067

    Article  Google Scholar 

  3. Amani-Beni M, Zhang B, Xie G-d XJ (2018) Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: a case study of Olympic Park in Beijing, China. Urban For Urban Green 32:1–6. https://doi.org/10.1016/j.ufug.2018.03.016

    Article  Google Scholar 

  4. Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, Anderson HR, Bisanti L, DʼIppoliti D, Danova J, Forsberg B, Medina S, Paldy A, Rabczenko D, Schindler C, Michelozzi P (2008) Heat effects on mortality in 15 European cities. Epidemiology 19:711–719. https://doi.org/10.1097/EDE.0b013e318176bfcd

    Article  Google Scholar 

  5. Berto R, Stival CA, Rosato P (2018) Enhancing the environmental performance of industrial settlements: an economic evaluation of extensive green roof competitiveness. Build Environ 127:58–68. https://doi.org/10.1016/j.buildenv.2017.10.032

    Article  Google Scholar 

  6. Broadbent AM, Coutts AM, Tapper NJ, Demuzere M, Beringer J (2017) The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theor Appl Climatol 134:1–23. https://doi.org/10.1007/s00704-017-2241-3

    Article  Google Scholar 

  7. Cao X, Onishi A, Chen J, Imura H (2010) Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc Urban Plan 96:224–231. https://doi.org/10.1016/j.landurbplan.2010.03.008

    Article  Google Scholar 

  8. Chan EY, Goggins WB, Kim JJ, Griffiths SM (2012) A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. J Epidemiol Community Health 66:322–327. https://doi.org/10.1136/jech.2008.085167

    Article  Google Scholar 

  9. Chatzidimitriou A, Yannas S (2016) Microclimate design for open spaces: ranking urban design effects on pedestrian thermal comfort in summer. Sustain Cities Soc 26:27–47. https://doi.org/10.1016/j.scs.2016.05.004

    Article  Google Scholar 

  10. Chen L, Fang XQ, Li S, Zhang HD (2008) Impacts of climate warming on electricity consumption for heating and cooling in the hot summer and cool winter zone of china. J Nat Resour 23:764–772. https://doi.org/10.11849/zrzyxb.2008.05.003

    Article  Google Scholar 

  11. Chen J, Wang H, Zhu H (2017) Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect. Appl Therm Eng 113:739–748. https://doi.org/10.1016/j.applthermaleng.2016.11.080

    Article  Google Scholar 

  12. Eskeland GS, Mideksa TK (2010) Electricity demand in a changing climate. Mitig Adapt Strateg Glob Chang 15:877–897. https://doi.org/10.1007/s11027-010-9246-x

    Article  Google Scholar 

  13. Fan J-L, Yu H, Wei Y-M (2015) Residential energy-related carbon emissions in urban and rural China during 1996–2012: from the perspective of five end-use activities. Energy Build 96:201–209. https://doi.org/10.1016/j.enbuild.2015.03.026

    Article  Google Scholar 

  14. Gago EJ, Roldan J, Pacheco-Torres R, Ordóñez J (2013) The city and urban heat islands: a review of strategies to mitigate adverse effects. Renew Sust Energ Rev 25:749–758. https://doi.org/10.1016/j.rser.2013.05.057

    Article  Google Scholar 

  15. Gi K, Sano F, Hayashi A, Tomoda T, Akimoto K (2016) A global analysis of residential heating and cooling service demand and cost-effective energy consumption under different climate change scenarios up to 2050. Mitig Adapt Strateg Glob Chang 23:51–79. https://doi.org/10.1007/s11027-016-9728-6

    Article  Google Scholar 

  16. He J, Hoyano A, Asawa T (2009) A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance. Appl Energy 86:1596–1605. https://doi.org/10.1016/j.apenergy.2008.12.034

    Article  Google Scholar 

  17. Hirano Y, Fujita T (2016) Simulating the CO2 reduction caused by decreasing the air conditioning load in an urban area. Energy Build 114:87–95. https://doi.org/10.1016/j.enbuild.2015.06.033

    Article  Google Scholar 

  18. Hooshangi HR, Akbari H, Touchaei AG (2016) Measuring solar reflectance of variegated flat roofing materials using quasi-Monte Carlo method. Energy Build 114:234–240. https://doi.org/10.1016/j.enbuild.2015.06.073

    Article  Google Scholar 

  19. Imam Syafii N, Ichinose M, Kumakura E, Jusuf SK, Chigusa K, Wong NH (2017) Thermal environment assessment around bodies of water in urban canyons: a scale model study. Sustain Cities Soc 34:79–89. https://doi.org/10.1016/j.scs.2017.06.012

    Article  Google Scholar 

  20. Jiang W, Sha A, Xiao J, Wang Z, Apeagyei A (2016) Experimental study on materials composition design and mixture performance of water-retentive asphalt concrete. Constr Build Mater 111:128–138. https://doi.org/10.1016/j.conbuildmat.2016.02.070

    Article  Google Scholar 

  21. Joudi A, Svedung H, Cehlin M, Rönnelid M (2013) Reflective coatings for interior and exterior of buildings and improving thermal performance. Appl Energy 103:562–570. https://doi.org/10.1016/j.apenergy.2012.10.019

    Article  Google Scholar 

  22. Koomen E, Diogo V (2017) Assessing potential future urban heat island patterns following climate scenarios, socio-economic developments and spatial planning strategies. Mitig Adapt Strateg Glob Chang 22:287–306. https://doi.org/10.1007/s11027-015-9646-z

    Article  Google Scholar 

  23. Kovacs KF, Haight RG, Jung S, Locke DH, O'Neil-Dunne J (2013) The marginal cost of carbon abatement from planting street trees in New York City. Ecol Econ 95:1–10. https://doi.org/10.1016/j.ecolecon.2013.08.012

    Article  Google Scholar 

  24. Leal Filho W, Echevarria Icaza L, Neht A, Klavins M, Morgan EA (2018) Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J Clean Prod 171:1140–1149. https://doi.org/10.1016/j.jclepro.2017.10.086

    Article  Google Scholar 

  25. Lin T-P, Lin FY, Wu PR, Hämmerle M, Höfle B, Bechtold S, Hwang RL, Chen YC (2017) Multiscale analysis and reduction measures of urban carbon dioxide budget based on building energy consumption. Energy Build 153:356–367. https://doi.org/10.1016/j.enbuild.2017.07.084

    Article  Google Scholar 

  26. Liu NX, Wang J, Li R (2009) Computational method of CO2 emissions in Chinese urban residential communities. J Tsinghua Univ 49:1433–1436. https://doi.org/10.16511/j.cnki.qhdxxb.2009.09.001

    Article  Google Scholar 

  27. Lixin Y, Ke C, Xiaoying C, Yueling S, Xiaoqing C, Ye H (2017) Analysis of social vulnerability of residential community to hazards in Tianjin, China. Nat Hazards 87:1223–1243. https://doi.org/10.1007/s11069-017-2781-y

    Article  Google Scholar 

  28. Lowe SA (2016) An energy and mortality impact assessment of the urban heat island in the US. Environ Impact Assess Rev 56:139–144. https://doi.org/10.1016/j.eiar.2015.10.004

    Article  Google Scholar 

  29. Middel A, Häb K, Brazel AJ, Martin CA, Guhathakurta S (2014) Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc Urban Plan 122:16–28. https://doi.org/10.1016/j.landurbplan.2013.11.004

    Article  Google Scholar 

  30. Middel A, Chhetri N, Quay R (2015) Urban forestry and cool roofs: assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban For Urban Green 14:178–186. https://doi.org/10.1016/j.ufug.2014.09.010

    Article  Google Scholar 

  31. O'Neill MS, Ebi KL (2009) Temperature extremes and health: impacts of climate variability and change in the United States. J Occup Environ Med 51:13–25. https://doi.org/10.1097/JOM.0b013e318173e122

    Article  Google Scholar 

  32. Peng LLH, Jim CY (2015) Economic evaluation of green-roof environmental benefits in the context of climate change: the case of Hong Kong. Urban For Urban Green 14:554–561. https://doi.org/10.1016/j.ufug.2015.05.006

    Article  Google Scholar 

  33. Qaid A, Bin Lamit H, Ossen DR, Raja Shahminan RN (2016) Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy Build 133:577–595. https://doi.org/10.1016/j.enbuild.2016.10.006

    Article  Google Scholar 

  34. Qin Z, Karnieli A, Berliner P (2010) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 22:3719–3746. https://doi.org/10.1080/01431160010006971

    Article  Google Scholar 

  35. Rossi F, Castellani B, Presciutti A, Morini E, Filipponi M, Nicolini A, Santamouris M (2015) Retroreflective façades for urban heat island mitigation: experimental investigation and energy evaluations. Appl Energy 145:8–20. https://doi.org/10.1016/j.apenergy.2015.01.129

    Article  Google Scholar 

  36. Saffari M, de Gracia A, Ushak S, Cabeza LF (2017) Passive cooling of buildings with phase change materials using whole-building energy simulation tools: a review. Renew Sust Energ Rev 80:1239–1255. https://doi.org/10.1016/j.rser.2017.05.139

    Article  Google Scholar 

  37. Santamouris M (2014a) Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol Energy 103:682–703. https://doi.org/10.1016/j.solener.2012.07.003

    Article  Google Scholar 

  38. Santamouris M (2014b) On the energy impact of urban heat island and global warming on buildings. Energy Build 82:100–113. https://doi.org/10.1016/j.enbuild.2014.07.022

    Article  Google Scholar 

  39. Santos Nouri A, Fröhlich D, Matos Silva M, Matzarakis A (2018) The impact of Tipuana tipu species on local human thermal comfort thresholds in different urban canyon cases in Mediterranean climates: Lisbon, Portugal. Atmosphere 9:12. https://doi.org/10.3390/atmos9010012

    Article  Google Scholar 

  40. Shen H, Huang L, Zhang L, Wu P, Zeng C (2016) Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China. Remote Sens Environ 172:109–125. https://doi.org/10.1016/j.rse.2015.11.005

    Article  Google Scholar 

  41. Siu LW, Hart MA (2013) Quantifying urban heat island intensity in Hong Kong SAR, China. Environ Monit Assess 185:4383–4398. https://doi.org/10.1007/s10661-012-2876-6

    Article  Google Scholar 

  42. Stratópoulos LMF, Duthweiler S, Häberle K-H, Pauleit S (2018) Effect of native habitat on the cooling ability of six nursery-grown tree species and cultivars for future roadside plantings. Urban For Urban Green 30:37–45. https://doi.org/10.1016/j.ufug.2018.01.011

    Article  Google Scholar 

  43. Sun S, Xu X, Lao Z, Liu W, Li Z, Higueras García E, He L, Zhu J (2017) Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Build Environ 123:277–288. https://doi.org/10.1016/j.buildenv.2017.07.010

    Article  Google Scholar 

  44. Syafii NI, Ichinose M, Wong NH, Kumakura E, Jusuf SK, Chigusa K (2016) Experimental study on the influence of urban water body on thermal environment at outdoor scale model. Proc Eng 169:191–198. https://doi.org/10.1016/j.proeng.2016.10.023

    Article  Google Scholar 

  45. Taleghani M (2018) Outdoor thermal comfort by different heat mitigation strategies—a review. Renew Sust Energ Rev 81:2011–2018. https://doi.org/10.1016/j.rser.2017.06.010

    Article  Google Scholar 

  46. Tan CL, Wong NH, Tan PY, Jusuf SK, Chiam ZQ (2015) Impact of plant evapotranspiration rate and shrub albedo on temperature reduction in the tropical outdoor environment. Build Environ 94:206–217. https://doi.org/10.1016/j.buildenv.2015.08.001

    Article  Google Scholar 

  47. Upreti R, Wang Z-H, Yang J (2017) Radiative shading effect of urban trees on cooling the regional built environment. Urban For Urban Green 26:18–24. https://doi.org/10.1016/j.ufug.2017.05.008

    Article  Google Scholar 

  48. Vahmani P, Sun F, Hall A, Ban-Weiss G (2016) Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environ Res Lett 11:124027. https://doi.org/10.1088/1748-9326/11/12/124027

    Article  Google Scholar 

  49. Wong KV, Paddon A, Jimenez A (2013) Review of world urban heat islands: many linked to increased mortality. J Energy Resour Technol 135:022101. https://doi.org/10.1115/1.4023176

    Article  Google Scholar 

  50. Wu Z, Chen L (2017) Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: integrating modeling with in-situ measurements. Landsc Urban Plan 167:463–472. https://doi.org/10.1016/j.landurbplan.2017.07.015

    Article  Google Scholar 

  51. Yang Y, Zhang X, Lu X, Hu J, Pan X, Zhu Q, Su W (2017) Effects of building design elements on residential thermal environment. Sustainability 10:57. https://doi.org/10.3390/su10010057

    Article  Google Scholar 

  52. Yin C, Yuan M, Lu Y, Huang Y, Liu Y (2018) Effects of urban form on the urban heat island effect based on spatial regression model. Sci Total Environ 634:696–704. https://doi.org/10.1016/j.scitotenv.2018.03.350

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tianjin technical innovation guidance project program (16YDLJSF00030) and the science and technology project of Tianjin City Planning Bureau and cooperation innovation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xue-yi You.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, R., You, X. Reduction of urban heat island and associated greenhouse gas emissions. Mitig Adapt Strateg Glob Change 25, 689–711 (2020). https://doi.org/10.1007/s11027-019-09886-1

Download citation

Keywords

  • Green space
  • Heat island
  • Numerical simulation
  • Orthogonal experimental design
  • Residential community