Skip to main content

Advertisement

Log in

Evapotranspiration in North America: implications for water resources in a changing climate

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Accurate quantification of evapotranspiration (ET) is important to understanding its role in the global hydrological cycle of terrestrial ecosystems and feedbacks to the climate system. This study improves ET quantification in North America using a data assimilation technique and a process-based Terrestrial Ecosystem Model as well as in situ and satellite data. ET is modeled using the Penman-Monteith equation with an improved leaf area index (LAI) algorithm in a biogeochemistry model, the Terrestrial Ecosystem Model (TEM). The evaluated TEM was used to estimate ET at site and regional scales in North America from 2000 to 2010. The estimated annual ET varies from 420 to 450 mm year−1 with the improved model, close to Moderate Resolution Imaging Spectroradiometer monthly data with a root-mean-square error less than 10 mm month−1 for the study period. Alaska, Canada, and the conterminous US account for 33%, 6%, and 61% of the regional ET, respectively. Water availability, the difference between precipitation and ET, is 181 mm month−1, averaged from 2000 to 2010. Under IPCC Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 scenarios, the regional ET increases by 11% and 24%, respectively. Consequently, the water availability decreases in the region by 2.4% and 23.7%, respectively. For the period of 2020–2100, due to uncertain parameters, TEM versions integrated with three different ET algorithms estimated that the regional ET in the USA are 430.5 ± 10.5 mm year−1, 482.1 ± 11.2 mm year−1, and 489.7 ± 13.4 mm year−1, and the available water is − 105.3 ± 8.7 mm year−1, − 20.3 ± 11.9 mm year−1, and − 126.2 ± 15.4 mm year−1, respectively, by the end of the twenty-first century. Our analysis suggests natural terrestrial ecosystem soils in North America will get drier under future climate conditions, which will impact the regional water resource and the climate system. Based on our ET simulation under three climate change scenarios, our study suggests that the RCP 2.6 is the optimum trajectory for preserving freshwater resources in North America and other regions in the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen RG (2000) Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J Hydrol 229(1):27–41

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, Rome 300(9)

    Google Scholar 

  • Allen RG, Tasumi M, Morse A, Trezza R (2005) A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig Drain Syst 19(3–4):251–268

    Article  Google Scholar 

  • Asrar G, Myneni RB, Li Y, Kanemasu ET (1989) Measuring and modeling spectral characteristics of a tallgrass prairie. Remote Sens Environ 27(2):143–155

    Article  Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2):161–173

    Article  Google Scholar 

  • Betts AK, Ball JH, Beljaars A, Miller MJ, Viterbo PA (1996) The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res Atmos 101(D3):7209–7225

    Article  Google Scholar 

  • Biederman JA, Scott RL, Goulden ML, Vargas R, Litvak ME, Kolb TE et al (2016) Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob Chang Biol 22(5):1867–1879

    Article  Google Scholar 

  • Chapin FS, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Chang Biol 6(S1):211–223

    Article  Google Scholar 

  • Chen M, Zhuang Q, Cook DR, Coulter R, Pekour M, Scott RL, Munger JW, Bible K (2011) Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data. Biogeosciences 8(2):2721–2773

    Article  Google Scholar 

  • Dolman AJ, De Jeu RAM (2010) Evaporation in focus. Nat Geosci 3(5):296–296

    Article  Google Scholar 

  • Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A et al (2006) Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manag 79(1):1–27

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002):881–884

    Article  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17(2):294–304

    Article  Google Scholar 

  • Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112(3):901–919

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng 129(1):53–63

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    Article  Google Scholar 

  • Holland WR (1978) The role of mesoscale eddies in the general circulation of the ocean—numerical experiments using a wind-driven quasi-geostrophic model. J Phys Oceanogr 8(3):363–392

    Article  Google Scholar 

  • Hunt HW, Elliott ET, Detling JK, Morgan JA, Chen DX (1996) Responses of a C3 and a C4 perennial grass to elevated CO2 and temperature under different water regimes. Glob Chang Biol 2(1):35–47

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2014) Climate change 2014—impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, Cambridge

    Google Scholar 

  • Jensen ME, Haise HR (1963) Estimating evapotranspiration from solar radiation. Proc Am Soc Civ Eng, J Irrig Drain Div 89:15–41

    Google Scholar 

  • Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys 50(3)

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res Atmos 99(D7):14415–14428

    Article  Google Scholar 

  • Liu Y, Zhuang Q, Chen M, Pan Z, Tchebakova N, Sokolov A et al (2013) Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Glob Planet Chang 108:85–99

    Article  Google Scholar 

  • Liu Y, Zhuang Q, Pan Z, Miralles D, Tchebakova N, Kicklighter D, Chen J, Sirin A, He Y, Zhou G, Melillo J (2014) Response of evapotranspiration and water availability to the changing climate in northern Eurasia. Clim Chang 126(3–4):413–427

    Article  Google Scholar 

  • Liu Y, Zhuang Q, Miralles D, Pan Z, Kicklighter D, Zhu Q, He Y, Chen J, Tchebakova N, Sirin A, Niyogi D, Melillo J (2015) Evapotranspiration in northern Eurasia: impact of forcing uncertainties on terrestrial ecosystem model estimates. J Geophys Res Atmos 120(7):2647–2660

    Article  Google Scholar 

  • Lu X, Zhuang Q (2010) Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens Environ 114(9):1924–1939

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  • Miralles DG, De Jeu RA, Gash JH, Holmes TR, Dolman AJ (2011) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15:967–981

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19(205-23):4

    Google Scholar 

  • Mooney H, Cropper A, Reid W (2005) Confronting the human dilemma. Nature 434(7033):561–562

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800

    Article  Google Scholar 

  • Mueller B, Hirschi M, Jimenez C, Ciais P, Dirmeyer PA, Dolman AJ, Miralles DG (2013) Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol Earth Syst Sci

  • Pan Y, Mcguire AD, Kicklighter DW, Melillo JM (1996) The importance of climate and soils for estimates of net primary production: a sensitivity analysis with the terrestrial ecosystem model. Glob Chang Biol 2(1):5–23

    Article  Google Scholar 

  • Pan S, Tian H, Dangal SR, Yang Q, Yang J, Lu C et al (2015) Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century. Earth’s Future 3(1):15–35

    Article  Google Scholar 

  • Qu Y, Zhuang Q (2018) Modeling leaf area index in North America using a process-based terrestrial ecosystem model. Ecosphere 9(1)

  • Qu Y, Maksyutov S, & Zhuang Q (2018) An efficient method for accelerating the spin-up process for process-based biogeochemistry models. Biogeosciences 15(13)

  • Rasmusson EM (1968) Atmospheric water vapor transport and the water balance of North America: II. Large-scale water balance investigations. Mon Weather Rev 96(10):720–734

    Article  Google Scholar 

  • Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935

    Article  Google Scholar 

  • Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H, Harnik N, Leetmaa A, Lau N, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185

    Article  Google Scholar 

  • Sobrino JA, Gómez M, Jiménez-Muñoz JC, Olioso A, Chehbouni G (2005) A simple algorithm to estimate evapotranspiration from DAIS data: application to the DAISEX campaigns. J Hydrol 315(1):117–125

    Article  Google Scholar 

  • Song L, Zhuang Q, Yin Y, Zhu X, Wu S (2017) Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environ Res Lett 12(1):014011

    Article  Google Scholar 

  • Sun G, Alstad K, Chen J, Chen S, Ford CR, Lin G et al (2011) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2):245–255

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. 66:(1)77. LWW

    Article  Google Scholar 

  • Van Vuuren DP, Den Elzen MG, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B et al (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Chang 81(2):119–159

    Article  Google Scholar 

  • Vörösmarty CJ, Federer CA, Schloss AL (1998) Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207(3–4):147–169

    Article  Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561

    Article  Google Scholar 

  • Wang K, Wang P, Li Z, Cribb M, Sparrow M (2007) A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J Geophys Res Atmos 112(D15)

  • Wiegand CL, Richardson AJ, Kanemasu ET (1979) Leaf area index estimates for wheat from Landsat and their implications for evapotranspiration and crop modeling. Agron J 71(2):336–342

    Article  Google Scholar 

  • Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric For Meteorol 100(1):1–18

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JC, Gao F et al (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475

    Article  Google Scholar 

  • Zhang Y, Peña-Arancibia JL, McVicar TR, Chiew FH, Vaze J, Liu C, …, Miralles DG (2016) Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci Rep, 6 19124

  • Zhuang Q, McGuire AD, Melillo JM, Clein JS, Dargaville RJ, Kicklighter DW, Myneni RB, Dong J, Romanovsky VE, Harden J, Hobbie JE (2003) Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics. Tellus B 55(3):751–776

    Article  Google Scholar 

  • Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T (2010) Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob Ecol Biogeogr 19(5):649–662

    Google Scholar 

  • Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126(1):67–80

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part through computational resources provided by Information Technology at Purdue, West Lafayette, Indiana.

Funding

This research was supported by an NSF project (No. 1028291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianlai Zhuang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Zhuang, Q. Evapotranspiration in North America: implications for water resources in a changing climate. Mitig Adapt Strateg Glob Change 25, 205–220 (2020). https://doi.org/10.1007/s11027-019-09865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-019-09865-6

Keywords

Navigation