Climate impact potential of utilizing forest residues for bioenergy in Norway

  • Geoffrey Guest
  • Francesco Cherubini
  • Anders Hammer Strømman
Original Article


The utilization of forest residues for bioenergy in Norway is foreseen to increase due to the government call to double bioenergy output by 2020 to thirty Tera-Watt hours. This study focuses on the climate impacts of bioenergy utilization where four forest residue extraction scenarios at clear-cut are considered: i) 75 % above ground residues (branches, (25 %) foliage, tops); ii) 75 % above and below ground residues (branches, tops, (25 %) foliage, stumps, coarse and small roots); iii) extracting 100 % of all available forest residue; and iv) leaving all residues in the forest. The Yasso07 soil-carbon model was utilized to quantify the carbon flux to the atmosphere due to the forest residues that are left in the forest in each scenario. The climate impact potential for each scenario was then calculated for the carbon-flux neutral Norway Spruce (Picea abies) forest system in five regions of Norway. The biogenic carbon dioxide emissions associated to decomposition upon forest floor, procurement losses and bioenergy conversion are included in these calculations. Results suggest that if such bioenergy can directly replace a fossil source of energy, the utilization of this biomass was found to be climatically beneficial in most fossil energy replacement cases and time horizons when compared to leaving the residues in the forest. Integrated global temperature change displacement factors have been developed which have been used to estimate the magnitude of this climate change mitigation over a particular time horizon.


Bioenergy Carbon neutral Climate change Forest residues Global temperature potential 



The authors would like to acknowledge the Norwegian research council for funding this work through the Bio-energy Innovation Centre (CenBio).

Supplementary material

11027_2012_9409_MOESM1_ESM.doc (14 mb)
ESM 1 (DOC 13.9 mb)


  1. Boucher O, Reddy MS (2008) Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy 36:193–200CrossRefGoogle Scholar
  2. CenBio (2009) CenBio Newsletter. December 2009. Accessed 24.10.2011.
  3. Cherubini F, Peters GB, Bernsten T, Strømman AH, Hertwich E (2011a) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy 3(5):413–426CrossRefGoogle Scholar
  4. Cherubini F, Strømman AH, Hertwich E (2011b) Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy. Ecol Model. doi: 10.1016/j.ecolmodel.2011.06.021
  5. Cherubini F, Guest G, Strømman AH (2012) Application of probability distributions to the modeling of biogenic CO2 fluxes in life cycle assessment. GCB Bioenergy. doi: 10.1111/j.1757-1707.2011.01156.x
  6. Cullen JM, Allwood JM (2010) Theoretical efficiency limits for energy conversion services. Energy 35:2059–2069CrossRefGoogle Scholar
  7. de Wit HA, Kvindesland S (1999) Carbon in Norwegian forest soils and effects of forest management on carbon storage. Norwegian Forest Research Institute, ÅsGoogle Scholar
  8. de Wit HA, Palosuo T, Hylen G, Liski J (2006) A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicably method. For Ecol Manag 225:15–26CrossRefGoogle Scholar
  9. Domke GM, Becker DR, D’Amato AW, Ek AR, Woodall CW (2012) Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA. Biomass Bioenergy 36:141–150CrossRefGoogle Scholar
  10. EC (European Commission) (2010) Europe 2020 A strategy for smart, sustainable and inclusive growth. Communication from the Commission-COM 2020, Brussels, 3.3.2010.Google Scholar
  11. Fahlen E, Ahlgren EO (2009) Assessment of integration of difference biomass gasification alternatives in a district-heating system. Energy 34(12):2184–2195CrossRefGoogle Scholar
  12. Forsberg G (2000) Analysis of bioenergy transport using life cycle inventory method. Biomass Bioenergy 19:17–30CrossRefGoogle Scholar
  13. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: e. a. S. Solomon (Ed.), Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UKGoogle Scholar
  14. Fuglestvedt JS, Shine KP, Berntsen T et al (2010) Transport impacts on atmosphere and climate: metrics. Atmos Environ 44:4648–4677CrossRefGoogle Scholar
  15. IPCC (2006) In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. IGES Published, JapanGoogle Scholar
  16. Jandl R, Lindner M, Vesterdal L et al (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268CrossRefGoogle Scholar
  17. Joelsson A, Gustavsson L (2009) District heating and energy conservation in detached houses of differing size and construction. Appl Energ 86(2):126–134CrossRefGoogle Scholar
  18. Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental panel on Climate Change (IPCC) emission scenarios. Global Biogeochem Cycles 15:891–907CrossRefGoogle Scholar
  19. Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forest in Finland to climate change, with implications for adaptive management. Phil Trans R Soc B 363:2339–2349CrossRefGoogle Scholar
  20. Kirkinen J, Palosuo T, Holmgren K, Savolainen I (2008) Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment. Environ Manag 42(3):458–469CrossRefGoogle Scholar
  21. Kirkinen J, Sahay J, Savolainen I (2009) Greenhouse impact of fossil, forest residues and jatropha diesel: a static and dynamic assessment. Progr Ind Ecol Int J 6(2):185–206CrossRefGoogle Scholar
  22. Kreutz TG, Larson ED, Liu G, Williams RH (2008) Fischer-tropsch fuels from coal and biomass. Princeton Environmental Institute, PrincetonGoogle Scholar
  23. Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch accounting to stand age for boreal forests. For Ecol Manag 188:211–224CrossRefGoogle Scholar
  24. Mann MK, Spath PL (1997) Life cycle assessment of a biomass gasification combined-cycle power system. National Renewable Energy Laboratory, GoldenGoogle Scholar
  25. McKechnie J, Colombo S, Chen J, Mabee W, MacLean HL. (2011) Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ Sci Technol 15;45(2):789–95Google Scholar
  26. Melin Y, Petersson H, Nordfjell T (2009) Decomposition of stump and root systems of Norway spruce in Sweden – A modeling approach. For Ecol Manag 257:1445–1451CrossRefGoogle Scholar
  27. MET (2011) Meteorologisk institute. eKlima. Accessed 14.04.2011,,39035,73_39049&_dad=portal&_schema=PORTAL.
  28. Nurmi J (2007) Recovery of logging residues for energy from spruce (Pices abies) dominated stands. Biomass Bioenergy 31:375–380CrossRefGoogle Scholar
  29. Repo A, Tuomi M, Liski J (2011) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy 3:107–115CrossRefGoogle Scholar
  30. Rørstad PK, Trømborg E, Bergseng E, Solberg N (2010) Estimating regional supply of harvest residues in Norway. Silva Fennica 44(3):435–451Google Scholar
  31. Röser D, Asikainen A, Stupak I, Pasanen K (2008) Chapter 2 forest energy resources and potentials. In: Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I (eds) Sustainable use of forest biomass for energy. Springer, DordrechtCrossRefGoogle Scholar
  32. Samuelsson H (2002) Recommendations for the extraction of forest fuel and compensation fertilizing. [Swedish] National Borad of Forestry, April 2002. Acessed 18.05.2011, from
  33. Sathre R, Gustavsson L (2011) Time-dependent climate benefits of using forest residues to substitute fossil fuels. Biomass Bioenergy 35:2506–2516CrossRefGoogle Scholar
  34. Schimel D, Alves D, Enting IG, Heimann M, Joos F (1996) CO2 and the carbon cycle. In: Houghton JT (Ed.), IPCC second scientific assessment of climate change, New York, U.S.Google Scholar
  35. Schlamadinger B, Marland G (1996) Full fuel cycle carbon balances of bioenergy and forestry options. Energ Conservat Manag 37(6–8):813–818CrossRefGoogle Scholar
  36. Schlamadinger B, Spitzer J, Kohlmaier GH, Lüdeke M (1995) Carbon balance of bioenergy from logging residues. Biomass Bioenergy 8(4):221–234CrossRefGoogle Scholar
  37. Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38:1128–1140CrossRefGoogle Scholar
  38. Shine K, Fuglestvedt J, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302CrossRefGoogle Scholar
  39. Tuomi M, Vanhala P, Karhu K, Fritze H, Liski J (2008) Heterotrophic soil respiration – comparison of different models describing its temperature dependence. Ecol Model 211:182–190CrossRefGoogle Scholar
  40. Tuomi M, Thum T, Järvinen H et al (2009) Leaf litter decomposition – estimates of global variability based on Yasso07 model. Ecol Model 220:3362–3371CrossRefGoogle Scholar
  41. Walmsley JD, Godbold DL (2010) Stump harvesting for bioenergy – a review of the environmental impacts. Forestry 83:17–38CrossRefGoogle Scholar
  42. Whittaker C, Mortimer N, Murphy R, Matthews R (2011) Energy and greenhouse gas balance of the use of forest residues for bioenergy production in the UK. Biomass Bioenergy 35:4581–4594CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Geoffrey Guest
    • 1
  • Francesco Cherubini
    • 1
  • Anders Hammer Strømman
    • 1
  1. 1.Department of Energy and Process Engineering, Industrial Ecology ProgrammeNorwegian University of Science & TechnologyTrondheimNorway

Personalised recommendations