Skip to main content

Advertisement

Log in

Climate impact potential of utilizing forest residues for bioenergy in Norway

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

The utilization of forest residues for bioenergy in Norway is foreseen to increase due to the government call to double bioenergy output by 2020 to thirty Tera-Watt hours. This study focuses on the climate impacts of bioenergy utilization where four forest residue extraction scenarios at clear-cut are considered: i) 75 % above ground residues (branches, (25 %) foliage, tops); ii) 75 % above and below ground residues (branches, tops, (25 %) foliage, stumps, coarse and small roots); iii) extracting 100 % of all available forest residue; and iv) leaving all residues in the forest. The Yasso07 soil-carbon model was utilized to quantify the carbon flux to the atmosphere due to the forest residues that are left in the forest in each scenario. The climate impact potential for each scenario was then calculated for the carbon-flux neutral Norway Spruce (Picea abies) forest system in five regions of Norway. The biogenic carbon dioxide emissions associated to decomposition upon forest floor, procurement losses and bioenergy conversion are included in these calculations. Results suggest that if such bioenergy can directly replace a fossil source of energy, the utilization of this biomass was found to be climatically beneficial in most fossil energy replacement cases and time horizons when compared to leaving the residues in the forest. Integrated global temperature change displacement factors have been developed which have been used to estimate the magnitude of this climate change mitigation over a particular time horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boucher O, Reddy MS (2008) Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy 36:193–200

    Article  Google Scholar 

  • CenBio (2009) CenBio Newsletter. December 2009. Accessed 24.10.2011. http://www.sintef.no/project/CENBIO/CenBio%20Newsletter%20No%201.pdf.

  • Cherubini F, Peters GB, Bernsten T, Strømman AH, Hertwich E (2011a) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy 3(5):413–426

    Article  Google Scholar 

  • Cherubini F, Strømman AH, Hertwich E (2011b) Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy. Ecol Model. doi:10.1016/j.ecolmodel.2011.06.021

  • Cherubini F, Guest G, Strømman AH (2012) Application of probability distributions to the modeling of biogenic CO2 fluxes in life cycle assessment. GCB Bioenergy. doi:10.1111/j.1757-1707.2011.01156.x

  • Cullen JM, Allwood JM (2010) Theoretical efficiency limits for energy conversion services. Energy 35:2059–2069

    Article  Google Scholar 

  • de Wit HA, Kvindesland S (1999) Carbon in Norwegian forest soils and effects of forest management on carbon storage. Norwegian Forest Research Institute, Ås

    Google Scholar 

  • de Wit HA, Palosuo T, Hylen G, Liski J (2006) A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicably method. For Ecol Manag 225:15–26

    Article  Google Scholar 

  • Domke GM, Becker DR, D’Amato AW, Ek AR, Woodall CW (2012) Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA. Biomass Bioenergy 36:141–150

    Article  Google Scholar 

  • EC (European Commission) (2010) Europe 2020 A strategy for smart, sustainable and inclusive growth. Communication from the Commission-COM 2020, Brussels, 3.3.2010.

  • Fahlen E, Ahlgren EO (2009) Assessment of integration of difference biomass gasification alternatives in a district-heating system. Energy 34(12):2184–2195

    Article  Google Scholar 

  • Forsberg G (2000) Analysis of bioenergy transport using life cycle inventory method. Biomass Bioenergy 19:17–30

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: e. a. S. Solomon (Ed.), Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK

  • Fuglestvedt JS, Shine KP, Berntsen T et al (2010) Transport impacts on atmosphere and climate: metrics. Atmos Environ 44:4648–4677

    Article  Google Scholar 

  • IPCC (2006) In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. IGES Published, Japan

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L et al (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  Google Scholar 

  • Joelsson A, Gustavsson L (2009) District heating and energy conservation in detached houses of differing size and construction. Appl Energ 86(2):126–134

    Article  Google Scholar 

  • Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental panel on Climate Change (IPCC) emission scenarios. Global Biogeochem Cycles 15:891–907

    Article  Google Scholar 

  • Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forest in Finland to climate change, with implications for adaptive management. Phil Trans R Soc B 363:2339–2349

    Article  Google Scholar 

  • Kirkinen J, Palosuo T, Holmgren K, Savolainen I (2008) Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment. Environ Manag 42(3):458–469

    Article  Google Scholar 

  • Kirkinen J, Sahay J, Savolainen I (2009) Greenhouse impact of fossil, forest residues and jatropha diesel: a static and dynamic assessment. Progr Ind Ecol Int J 6(2):185–206

    Article  Google Scholar 

  • Kreutz TG, Larson ED, Liu G, Williams RH (2008) Fischer-tropsch fuels from coal and biomass. Princeton Environmental Institute, Princeton

    Google Scholar 

  • Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch accounting to stand age for boreal forests. For Ecol Manag 188:211–224

    Article  Google Scholar 

  • Mann MK, Spath PL (1997) Life cycle assessment of a biomass gasification combined-cycle power system. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • McKechnie J, Colombo S, Chen J, Mabee W, MacLean HL. (2011) Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ Sci Technol 15;45(2):789–95

    Google Scholar 

  • Melin Y, Petersson H, Nordfjell T (2009) Decomposition of stump and root systems of Norway spruce in Sweden – A modeling approach. For Ecol Manag 257:1445–1451

    Article  Google Scholar 

  • MET (2011) Meteorologisk institute. eKlima. Accessed 14.04.2011, http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL.

  • Nurmi J (2007) Recovery of logging residues for energy from spruce (Pices abies) dominated stands. Biomass Bioenergy 31:375–380

    Article  Google Scholar 

  • Repo A, Tuomi M, Liski J (2011) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy 3:107–115

    Article  Google Scholar 

  • Rørstad PK, Trømborg E, Bergseng E, Solberg N (2010) Estimating regional supply of harvest residues in Norway. Silva Fennica 44(3):435–451

    Google Scholar 

  • Röser D, Asikainen A, Stupak I, Pasanen K (2008) Chapter 2 forest energy resources and potentials. In: Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I (eds) Sustainable use of forest biomass for energy. Springer, Dordrecht

    Chapter  Google Scholar 

  • Samuelsson H (2002) Recommendations for the extraction of forest fuel and compensation fertilizing. [Swedish] National Borad of Forestry, April 2002. Acessed 18.05.2011, from http://shop.skogsstyrelsen.se/shop/9098/art62/4645962-9b6e2b-1545.pdf.

  • Sathre R, Gustavsson L (2011) Time-dependent climate benefits of using forest residues to substitute fossil fuels. Biomass Bioenergy 35:2506–2516

    Article  Google Scholar 

  • Schimel D, Alves D, Enting IG, Heimann M, Joos F (1996) CO2 and the carbon cycle. In: Houghton JT (Ed.), IPCC second scientific assessment of climate change, New York, U.S.

  • Schlamadinger B, Marland G (1996) Full fuel cycle carbon balances of bioenergy and forestry options. Energ Conservat Manag 37(6–8):813–818

    Article  Google Scholar 

  • Schlamadinger B, Spitzer J, Kohlmaier GH, Lüdeke M (1995) Carbon balance of bioenergy from logging residues. Biomass Bioenergy 8(4):221–234

    Article  Google Scholar 

  • Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38:1128–1140

    Article  Google Scholar 

  • Shine K, Fuglestvedt J, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302

    Article  Google Scholar 

  • Tuomi M, Vanhala P, Karhu K, Fritze H, Liski J (2008) Heterotrophic soil respiration – comparison of different models describing its temperature dependence. Ecol Model 211:182–190

    Article  Google Scholar 

  • Tuomi M, Thum T, Järvinen H et al (2009) Leaf litter decomposition – estimates of global variability based on Yasso07 model. Ecol Model 220:3362–3371

    Article  Google Scholar 

  • Walmsley JD, Godbold DL (2010) Stump harvesting for bioenergy – a review of the environmental impacts. Forestry 83:17–38

    Article  Google Scholar 

  • Whittaker C, Mortimer N, Murphy R, Matthews R (2011) Energy and greenhouse gas balance of the use of forest residues for bioenergy production in the UK. Biomass Bioenergy 35:4581–4594

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Norwegian research council for funding this work through the Bio-energy Innovation Centre (CenBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Guest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 13.9 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guest, G., Cherubini, F. & Strømman, A.H. Climate impact potential of utilizing forest residues for bioenergy in Norway. Mitig Adapt Strateg Glob Change 18, 1089–1108 (2013). https://doi.org/10.1007/s11027-012-9409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-012-9409-z

Keywords

Navigation