Assessing risk and adaptation options to fires and windstorms in European forestry

  • Mart-Jan Schelhaas
  • Geerten Hengeveld
  • Marco Moriondo
  • Gert Jan Reinds
  • Zbigniew W. Kundzewicz
  • Herbert ter Maat
  • Marco Bindi
Original Article


Risks can generally be described as the combination of hazard, exposure and vulnerability. Using this framework, we evaluated the historical and future development of risk of fire and wind damage in European forestry at the national level. Fire risk is expected to increase, mainly as a consequence of an increase in fire hazard, defined as the Fire Weather Index in summer. Exposure, defined as forest area, is expected to increase slightly as a consequence of active afforestation and abandonment of marginal agricultural areas. Adaptation options to fire risk should therefore aim to decrease the vulnerability, where a change in tree species from conifers to broadleaves had most effect. Risk for wind damage in forests is expected to increase mainly as a consequence of increase in exposure (total growing stock) and vulnerability (defined by age class and tree species distribution). Projections of future wind climate indicate an increase in hazard (storminess) mainly over Western Europe. Adaptation options should aim to limit the increase in exposure and vulnerability. Only an increase in harvest level can stop the current build-up of growing stock, while at the same time it will lower vulnerability through the reduction of the share of old and vulnerable stands. Changing species from conifers to broadleaves helps to reduce vulnerability as well. Lowering vulnerability by decreasing the rotation length is only effective in combination with a high demand for wood. Due to data limitations, no forecast of future fire area or damaged timber amount by storms was possible.


Adaptation Climate change Forest fire Forestry Natural disturbance Windstorm EFISCEN 



This study was financed by the European Commission through the ADAM project (Adaptation and Mitigation: Supporting European climate policy, FP7-018476). The research is part of the strategic research programmes “Sustainable spatial development of ecosystems, landscapes, seas and regions” and “Climate change”, funded by the Dutch Ministry of Agriculture, Nature Conservation and Food Quality, and carried out by Wageningen University Research centre. Furthermore we would like to thank Emil Cienciala and Zuzanna Exnerová from IFER for their help in obtaining historical forest inventory data for the Czech Republic.


  1. Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. For Ecol Manage 211:83–96CrossRefGoogle Scholar
  2. Aguado I, Chuvieco E, Martín P, Salas FJ (2003) Assessment of forest fire danger conditions in southern Spain from NOAA images and meteorological indices. Int J Remote Sens 24:1653–1668CrossRefGoogle Scholar
  3. Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, Devoy RJN, Giannakopoulos C, Martin E, Olesen JE, Shvidenko A (2007) Europe. Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ and Hanson CE (Eds), Cambridge University Press, Cambridge, UK, 541–580Google Scholar
  4. Amann M, Asman W, Bertok I, Cofala J, Heyes C, Klimont Z, Schöpp W, Wagner F (2007) Cost-effective emission reductions to meet the environmental targets of the Thematic Strategy on Air Pollution under different greenhouse gas constraints, NEC Scenario Analysis Report Nr. 5. IIASA, Laxenburg, AustriaGoogle Scholar
  5. Beniston M, Stephenson D, Christensen O, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95CrossRefGoogle Scholar
  6. Brown JK, Smith JK (2000) Wildland fire in ecosystems: effects of fire on flora. Gen. tech. rep. rmrs-gtr-42-vol. 2, U.S. Department of Agriculture, Forest Service. Available:
  7. ECMWF (2009) European Centre for Medium-Range Weather Forecasts, Cited 2 February 2009
  8. FAO (2007) State of the World’s Forests 2007. Food and Agricultural Organization of the United Nations, RomeGoogle Scholar
  9. Fernandes PM, Botelho H, Loureiro C (2000) Fire hazard implications of alternative fuel management techniques—case studies from northern Portugal. In: Proceedings from The Joint Fire Science Conference and Workshop, Idaho, 1999Google Scholar
  10. Fernandes PM, Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildland Fire 12(2):117–128CrossRefGoogle Scholar
  11. Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008) Fire resistance of European pines. For Ecol Manage 256:246–255CrossRefGoogle Scholar
  12. Fink A, Brücher T, Ermert V, Krüger A, Pinto JG (2009) The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat Hazards Earth Syst Sci 9:405–423CrossRefGoogle Scholar
  13. Finney MA (2001) Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For Sci 47:219–228Google Scholar
  14. Grace E (2009) Dangerous climate change and extreme weather events in Australia (in press)Google Scholar
  15. Graham RT, McCaffrey S, Jain TB (2004) Science basis for changing forest structure to modify wildfire behavior and severity. Gen. Tech. Rep. RMRS-GTR-120. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort CollinsGoogle Scholar
  16. Grayson AJ (ed) (1989) The 1987 Storm: impacts and responses. Forestry Commission Bulletin 87Google Scholar
  17. Hitz S, Smith J (2004) Estimating global impacts from climate change. Global Env Change 14(3):201–218CrossRefGoogle Scholar
  18. Holmsgaard E (1986) Historical development of wind damage in conifers in Denmark. In: Communities, CotE (ed) Minimizing wind damage to coniferous stands. Lövenholm Castle, Denmark, pp 2–4Google Scholar
  19. Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173(3):463–480CrossRefGoogle Scholar
  20. Image Team (2001) The IMAGE 2.2 implementation of the SRES scenarios: A comprehensive analysis of emissions, climate change and impacts in the 21st century. Main disc, National Institute for Public Health and the Environment, Bilthoven, the Netherlands. RIVM CD-ROM publication 481508018Google Scholar
  21. IPCC (2007) Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds.)]. Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  22. Jalkanen A, Mattila U (2000) Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. For Ecol Manage 135:315–330CrossRefGoogle Scholar
  23. Jones RG, Noguer M, Hassell D, Hudson D, Wilson S, Jenkins G, Mitchell J (2004) Generating high resolution climate change scenarios using PRECIS, report, Met Off. Hadley Centre, Exeter, UKGoogle Scholar
  24. JRC (2008) Forest Fires in Europe 2007. JRC Scientific and Technical Reports, Report No. 8. Joint Research Centre, Ispra, Italy.
  25. KNMI (2009) Koninklijk Nederlands Meteorologisch Instituut, Cited 2 February 2009
  26. Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172(3):393–411CrossRefGoogle Scholar
  27. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362CrossRefGoogle Scholar
  28. Kramer K, Leinonen I, Bartelink HH, Berbigier P, Borghetti M, Bernhofer C, Cienciala E, Dolman AJ, Froer O, Gracia CA, Granier A, Grünwald T, Hari P, Jans W, Kellomäki S, Loustau D, Magnani F, Markkanen T, Matteucci G, Mohren GMJ, Moors E, Nissinen A, Peltola H, Sabaté S, Sanchez A, Sonntag M, Valentini R, Vesala T (2002) Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Glob Chang Biol 8(3):213–230Google Scholar
  29. Kron W (2002) Flood risk = hazard x exposure x vulnerability. In: Wu M et al (eds) Flood defence. Science, New YorkGoogle Scholar
  30. Kuusela K (1994) Forest Resources in Europe 1950–1990. Research Report 1, European Forest Institute. Cambridge University PressGoogle Scholar
  31. Le Houérou HN (1981) Impact of man and his animals on Mediterranean vegetation. In: Di Castri F, Goodall D, Specht RL (eds) Mediterranean-type shrublands, ecosystems of the world vol 11. Elsevier Scientific Publishing Company, Amsterdam, pp 479–521Google Scholar
  32. Lüpke B, Spellmann H (1997) Aspekte der Stabilität und des Wachstums von Mischbestanden aus Fichte und Buche als Grundlage für waldbauliche entscheidungen. Forstarchiv 68:167–179Google Scholar
  33. MCPFE (2007) State of Europe’s forests 2007. The MCPFE Report on Sustainable Forest Management in Europe. Ministerial Conference on the Protection of Forests in Europe, Liaison Unit Warsaw, PolandGoogle Scholar
  34. Meyer J (2003) Fire effects on forest resource development in the French Mediterranean region—projections with a large-scale forest scenario model. Technical Report 16. European Forest InstituteGoogle Scholar
  35. Mills E, Lecomte E, Peara A (2001) U.S. Insurance Industry perspectives on global climate change. Lawrence Berkeley National Laboratory, MS 90-4000, U.S. Department of Energy, University of California, Berkeley, California, February 2001, p. 72Google Scholar
  36. Moberg A, Jones PD (2004) Regional climate model simulations of daily maximum and minimum near-surface temperatures across Europe compared with observed station data 1961–1990. Clim Dyn 23:695–715CrossRefGoogle Scholar
  37. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95CrossRefGoogle Scholar
  38. Nabuurs GJ, Pussinen A, Karjalainen T, Erhard M, Kramer K (2002) Stemwood volume increment changes in European forests due to climate change-a simulation study with the EFISCEN model. Glob Chang Biol 8:304–316CrossRefGoogle Scholar
  39. Nabuurs GJ, Schelhaas MJ, Mohren GMJ, Field CB (2003) Temporal evolution of the European Forest carbon sink from 1950 to 1999. Glob Chang Biol 9(2):152–160CrossRefGoogle Scholar
  40. Nabuurs GJ, Pussinen A, van Brusselen J, Schelhaas MJ (2007) Future harvesting pressure on European forests. Eur J For Res 126:391–400Google Scholar
  41. Nakicenovic N, Swart R (eds) (2000) IPCC Special Report on Emission Scenarios, Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  42. OBV (2009) Onderlinge Bossen Verzekering Cited 2 February 2009
  43. Quine C, Coutts M, Gardiner B, Pyatt G (1995) Forests and wind: management to minimize damage, Forestry Commission Bulletin 114. HMSO, LondonGoogle Scholar
  44. SAEFL (1999) The Swiss forest—taking stock. Interpretation of the Second National Forest Inventory in terms of forestry policyGoogle Scholar
  45. Sallnäs O (1990) A matrix growth model of the Swedish forest. Studia Forestalia Suecica 183, Swedish University of Agricultural Sciences, Faculty of Forestry. Uppsala, SwedenGoogle Scholar
  46. Schelhaas MJ (2008) The wind stability of different silvicultural systems for Douglas-fir in The Netherlands: a model-based approach. Forestry 81(3):399–414CrossRefGoogle Scholar
  47. Schelhaas MJ, Varis S, Schuck A (2001) Database on Forest Disturbances in Europe (DFDE), European Forest Institute, Joensuu, Finland. Cited 2 February 2009
  48. Schelhaas MJ, Nabuurs GJ, Sonntag M, Pussinen A (2002) Adding natural disturbances to a large-scale forest scenario model and a case study for Switzerland. For Ecol Manage 167:13–26CrossRefGoogle Scholar
  49. Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9(11):1620–1633CrossRefGoogle Scholar
  50. Schelhaas MJ, van Brusselen J, Pussinen A, Pesonen E, Schuck A, Nabuurs GJ Sasse V (2006a) Outlook for the Development of European Forest Resources. A study prepared for the European Forest Sector Outlook Study (EFSOS). Geneva Timber and Forest Discussion Paper, ECE/TIM/DP/41. UN-ECE, GenevaGoogle Scholar
  51. Schelhaas MJ, Varis S, Schuck A, Nabuurs GJ (2006b) EFISCEN Inventory Database, European Forest Institute, Joensuu, Finland, Cited 2 February 2009
  52. Schelhaas MJ, Cienciala E, Lindner M, Nabuurs GJ, Zianchi G (2007a) Selection and quantification of forestry measures targeted at the Kyoto Protocol and the Convention on Biodiversity. Alterra report 1508Google Scholar
  53. Schelhaas MJ, Eggers J, Lindner M, Nabuurs GJ, Pussinen A, Päivinen R, Schuck A, Verkerk PJ, van der Werf DC, Zudin S (2007b) Model documentation for the European Forest Information Scenario model (EFISCEN 3.1). Wageningen, Alterra, Alterra report 1559, EFI Technical Report 26, Joensuu, FinlandGoogle Scholar
  54. Schmid-Haas P, Bachofen H (1991) Die Sturmgefährdung von Einzelbäumen und Beständen. Schweizerische Zeitschrift für Forstwesen 142:477–504Google Scholar
  55. Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125:291–302Google Scholar
  56. Smits A, Klein Tank AMG, Können GP (2005) Trends in storminess over the Netherlands, 1962–2002. Int J Climatol 25:1331–1344CrossRefGoogle Scholar
  57. Sol B (1999) A European program improves the operational fight against forest fires: MINERVE Program and meteorological fire danger in southeastern France. In DELFI Proceedings, AthensGoogle Scholar
  58. Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, De Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manage 258:1735–1750CrossRefGoogle Scholar
  59. Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol 146(1):59–74CrossRefGoogle Scholar
  60. Ulbrich U, Leckebusch G, Pinto J (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131CrossRefGoogle Scholar
  61. UN-ECE/FAO (2000) Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand In: Geneva Timber and Forest Study papers No. 17Google Scholar
  62. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  63. Van Wagner CE (1987) Development and structure of a Canadian forest fire weather index system, Forestry Technical Report 35. Canadian Forestry Service, OttawaGoogle Scholar
  64. Vélez R (1985) Fire prevention in Aleppo pine forests. In: Le pin d’Alep et le pin brutia dans la sylviculture méditerranéenne, volume 1986 of Options Mediterraneennes. CIHEAM, 167–178. Available:
  65. Verburg PH, Schulp CJE, Witte N, Veldkamp A (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric Ecosyst Environ 114(1):39–56CrossRefGoogle Scholar
  66. Veroustraete F, Sabbe H, Eerens H (2002) Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens Environ 83(3):376–399CrossRefGoogle Scholar
  67. Viegas DX, Biovio G, Ferreira A, Nosenzo A, Sol B (1999) Comparative study of various methods of fire danger evaluation in southern Europe. Int J Wildland Fire 10:235–246CrossRefGoogle Scholar
  68. Viegas DX, Piñol J, Viegas MT, Ogaya R (2001) Estimating live fine fuels moisture content using meteorologically-based indices. Int J Wildland Fire 10:223–240CrossRefGoogle Scholar
  69. Winterhoff B, Schönfelder E, Heiligmann-Brauer G (1995) Sturmschäden des Frühjahrs 1990 in Hessen—Analyse nach Standorts-Bestandes-und Behandlungsmerkmalen. Forch. Ber. Hess. Landesanst. Forsteinrichtung, Waldforch. Und Waldökologie, Hannover Münden 20Google Scholar
  70. Zeng H, Pukkala T, Peltola H (2007) The use of heuristic optimization in risk management of wind damage in forest planning. For Ecol Manage 241:189–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mart-Jan Schelhaas
    • 1
  • Geerten Hengeveld
    • 1
  • Marco Moriondo
    • 3
  • Gert Jan Reinds
    • 1
  • Zbigniew W. Kundzewicz
    • 4
    • 5
  • Herbert ter Maat
    • 1
  • Marco Bindi
    • 2
  1. 1.AlterraWageningen URthe Netherlands
  2. 2.University of FlorenceFlorenceItaly
  3. 3.CNR-IBIMETFlorenceItaly
  4. 4.Research Centre for Agricultural and Forest Environment, Polish Academy of SciencesPoznańPoland
  5. 5.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations