Soil carbon sequestration in a changing global environment

  • Felipe Macías
  • Marta Camps Arbestain


Throughout its long history the Earth has undergone warm periods with high atmospheric concentrations of greenhouse gases (GHG), and has responded with different buffering mechanisms whereby atmospheric C has been transferred to other geochemical compartments. Strategies for the mitigation and adaptation to the current climatic forcing may thus be generated by the acceleration of such natural mechanisms, especially those involved in short cycles, mainly in the biosphere and the pedosphere. Although these contain smaller C stocks than other compartments (< 0.01% of the total C), they circulate large amounts of C from the atmosphere through photosynthesis and mineral weathering (e.g., 120 Pg C are circulated through terrestrial ecosystems and total C in the atmospheric compartment is 805 Pg C). Increased C sequestration can thus be achieved in terrestrial ecosystems, by: (1) favouring growth of biomass; (2) promoting and facilitating carbonation processes; (3) reducing erosion and favouring pedogenesis; (4) developing organic matter-rich horizons; (5) recovering degraded or contaminated soils, and/or (6) managing waste by use of systems that minimize emissions of GHG. Within the latter option, the following actions are considered here in more detail: 1) production of Technosols, and 2) production of biochar. All of the above options should form part of a strategy for the mitigation and adaptation to global climate change. In this review, we analyze those focused on promoting soil conservation, soil restoration and soil formation.


Carbonization Carbonation Carbon sequestration Soils Organic matter Technosols Biochar 



We acknowledge the Manawatu Microscopy and Imaging Centre (MMIC) and Doug Hopcroft for assistance in preparing the biochar samples and operating the SEM images. The authors are grateful to Dr. Miko U.F. Kirschbaum (Landcare Research, New Zealand) for his constructive revision of a previous version of this document. The authors also thank the anonymous reviewers for their valuable suggestions. M.C.A. is very grateful for financial support from the Ministery of Agriculture and Forestry of New Zealand. Finally, we acknowledge the financial support for the research, provided by the Spanish Ministry of Science and Education (project no. CTM 2006-13748-CO2).


  1. Bartlett RJ (1999) Characterizing soil redox behavior. In: Sparks D (ed) Soil physical chemistry, 2nd edn. CRC, Boca RatonGoogle Scholar
  2. Berner RA (1999) A new look at the long-term carbon cycle. GSA Today 9:1–6. Cited 3 April 2010Google Scholar
  3. Berner RA, Kothavala Z (2001) Geocarb III. A revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204.∼jean/paleo/ Berner_1983.pdf. Cited 3 April 2010Google Scholar
  4. Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683Google Scholar
  5. Bousquet P, Ciais P, Peylin P et al (1999) Inverse modelling of annual atmospheric CO2 sources and sinks. 1. Method and control inversion. J Geophys Res 104:26161–26178CrossRefGoogle Scholar
  6. Brodowski S, Amelung W, Haumaier L et al (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128(1–2):116–129CrossRefGoogle Scholar
  7. Brookins DG (1988) Eh-pH diagrams for Geochemistry. Springer-Verlag, BerlinGoogle Scholar
  8. Chan KY, Van Zwieten L, Meszanos I et al (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634CrossRefGoogle Scholar
  9. Chan KY, Van Zwieten L, Meszaros I et al (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444CrossRefGoogle Scholar
  10. Cheng C-H, Lehmann J, Thies JE et al (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488CrossRefGoogle Scholar
  11. Chesworth W (1973) The parent rock effect in the genesis of soil. Geoderma 10:215–225CrossRefGoogle Scholar
  12. Chesworth W (2004) Redox, soils and carbon sequestration. Edafol 11:37–43 Cited 3 April 2010Google Scholar
  13. Ciais P, Tans PP, Trolier M et al (1995) A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269:1098–1102CrossRefGoogle Scholar
  14. DeLuca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan Publications Ltd, Sterling, VA, pp 251–270Google Scholar
  15. Dima M, Lohmann G (2007) A hemisphere mechanism for the Atlantic multidecadal oscillation. J Climate 20:2706–2719CrossRefGoogle Scholar
  16. Douglas M (1966) Purity and danger: An analysis of the concepts of pollution and taboo. Routledge and Kegan Paul, London and New YorkCrossRefGoogle Scholar
  17. Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan Publications Ltd, Sterling, pp 13–30Google Scholar
  18. Dudal R, Nachtergaele FO, Purnell MF (2002) The human factor of soil formation. 17th WCSS, Bangkok, Thailand, 14–21 August 2002Google Scholar
  19. Falkowski P, Scholes RJ, Boyle E et al (2000) The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–296Google Scholar
  20. FAO, IUSS, ISRIC (1998) World Reference Base for Soil Resources. RomeGoogle Scholar
  21. France-Lanord G, Derry L, Galy A (1998) Continental erosion and CO2 uptake. Inferences from the Himalayan system. Mineral Mag 62:466–467CrossRefGoogle Scholar
  22. Gislason SR, Oelkers EH, Eiriksdottir ES et al (2008) The feedback between climate and weathering. Mineral Mag 72:317–320CrossRefGoogle Scholar
  23. Goddéris Y, Donnadieu Y, Dessert C et al (2007) Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations. Compt Rendus Geosci 339:212–222CrossRefGoogle Scholar
  24. Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93CrossRefGoogle Scholar
  25. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360CrossRefGoogle Scholar
  26. Hansen J, Sato M, Kharecha P et al (2008) Target atmospheric CO2: where should humanity aim? Open Atm Sci J 2:217–231CrossRefGoogle Scholar
  27. Hegerl G, Crowley T, Hyde W et al (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440:1026–1032CrossRefGoogle Scholar
  28. Houghton RA (2007) Balancing the global carbon budget. Ann Rev Earth Sci 35:313–347CrossRefGoogle Scholar
  29. IPCC(Intergovernmental Panel on Climate Change), Climate Change (2007). Solomon S, Dahe Q, Manning M et al. (eds), Cambridge Univ. Press, New YorkGoogle Scholar
  30. IUSS Working Group WRB (2006) World Refence Base for Soil Resources—A Framework for International Classification, Correlation and Communication. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  31. Juckes MN, Allen MR, Briffa KR et al (2007) Millennial temperature reconstruction intercomparison and evaluation. Climate of the past 3:591–609CrossRefGoogle Scholar
  32. Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organo molecular fragments into zonal structures on mineral surfaces. Biogeochem 85:9–24CrossRefGoogle Scholar
  33. Knicker H, Almendros G, Gonzalez-Vila FJ et al (1996) 13C- and 15 N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol Biochem 28:1053–1060CrossRefGoogle Scholar
  34. Kögel-Knabner I, Guggenberger G, Kleber M et al (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy and organic chemistry. J Plant Nutr Soil Sci 171:61–82CrossRefGoogle Scholar
  35. Köhler P, Fisher H (2006) Simulating low frequency changes in atmospheric CO2 during the last 740 000 years. Climate of the Past 2:57–78, Cited 3 April 2010.
  36. Krull ES, Baldock JA, Skjemstad JO et al (2009) Characteristics of biochar: organo-chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan Publications Ltd, Sterling, VA, pp 53–65Google Scholar
  37. Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627CrossRefGoogle Scholar
  38. Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22CrossRefGoogle Scholar
  39. Lehmann J (2007) A handful of carbon. Nature 447:143–144CrossRefGoogle Scholar
  40. Lehmann J, Joseph S (eds) (2009) Biochar for environmental management. Earthscan Publications Ltd, SterlingGoogle Scholar
  41. Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems—a review. Mitig Adapt Strategies Glob Chang 11:403–427CrossRefGoogle Scholar
  42. Liang B, Lehmann J, Solomon D et al (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730CrossRefGoogle Scholar
  43. Macías F, Calvo de Anta R (1988) Arcillas y limos de sedimentos actuales de las rías de Galicia. Consideraciones genéticas. Geociencias 3:179–187Google Scholar
  44. Macías F, Camps Arbestain M (2009) Alternativas para el secuestro de Carbono en suelos y biomasa: Aprendiendo de la naturaleza, aprendiendo de los Suelos. Academia de Ciencias de Andalucía (in press)Google Scholar
  45. Macías F, García C, Silva B et al (1988) Micromorfología y génesis de podsoles y suelos podsólicos. An Edaf Agrobiol 47(1–2):431–464Google Scholar
  46. Macías F, Macías-García F, Camps Arbestain M (2006) Compost y sistemas edáficos. Algunas consideraciones sobre su utilización. In: Moral R, Boluda R, Abad M, Mormeneo S (eds) Aspectos normativos tecnológicos y medioambientales del compostaje. ValenciaGoogle Scholar
  47. Macías F, Bao M, Macías-García F et al (2007) Valorización biogeoquímica de residuos por medio de la elaboración de Tecnosoles con diferentes aplicaciones ambientales. Agua Residuos 5:12–25Google Scholar
  48. Macías-García F, Camps Arbestain M, Macías F (2009a). Utilización de Tecnosoles derivados de residuos en procesos de restauración de suelos de la mina Touro. In: Cámara Oficial Mineira de Galicia (ed) Minería Sostenible, A Coruña, p 651Google Scholar
  49. Macías-García F; Fontán L, Otero X L et al. (2009b) Recuperación de aguas ácidas de la mina Touro mediante sistemas integrados de barreras reactivas con diferentes Tecnosoles y humedales. In: Cámara Oficial Mineira de Galicia (ed) Minería Sostenible. A Coruña, p 963Google Scholar
  50. Madigan MT, Martinko JM, Dunlap PV et al (eds) (2006) Brock biology of microorganisms, 12th edn. Person Benjamin Cummings, San FranciscoGoogle Scholar
  51. Marschner B, Brodowski S, Dreves A et al (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110CrossRefGoogle Scholar
  52. Mikkuta R, Mikkuta C, Kalbitz K et al (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim Cosmochim Acta 71:2569–2590CrossRefGoogle Scholar
  53. Murty D, Kirschbaum MUF, McMurtrie RE, McGilvary H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8:105–123CrossRefGoogle Scholar
  54. Nordt LC, Wilding LP, Drees LR (2000) Pedogenic carbonate transformations in leaching soil systems: implication for the global C cycle. In: Lal R, Kimble JL, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC/Lewis Publishers, Boca RatonGoogle Scholar
  55. Novak JM, Busscher WJ, Laird DL et al (2009) Impact of biochar amendment on fertility of a Southeastern Coastal Plain soil. Soil Sci 174:105–112CrossRefGoogle Scholar
  56. Otero XL, Vidal Torrado P, Calvo de Anta R et al (2005) Trace elements in biodeposits and sediments from mussell culture in the ría de Arousa (Galicia, NW Spain). Environ Pollut 136:119–134CrossRefGoogle Scholar
  57. Otero XL, Calvo de Anta R, Macías F (2006) Sulphur partitioning in sediments and biodeposits below mussel rafts in the Ría de Arousa (Galicia, NW Spain). Mar Environ Res 61:305–325CrossRefGoogle Scholar
  58. Page M, Trustrum N, Brackley H, Baisden T (2004) Erosion-related soil carbon fluxes in a pastoral steepland catchment, New Zealand. Agric Ecosys Environ 103:561–579CrossRefGoogle Scholar
  59. Pelley J (2008) Can wetland restoration cool the planet? Restoration of saltwater marshes is sure bet for sequestering carbon. Environ Sci Technol ASAP article 10/1021/es802790qGoogle Scholar
  60. Reay DS, Smith P, Hymus G, Sabine C (2007) New directions: the changing role of the terrestrial carbon sink in determining atmospheric CO2 concentrations. Atmos Environ 41:5813–5815CrossRefGoogle Scholar
  61. Robert M (2001) Soil carbon sequestration for improved land management; world soil resources. Reports 96 FAOGoogle Scholar
  62. Robert M, Saugier B (2004) Contribution des ecosystèmes continentaux à la séquestration du carbone. Edafol 11:45–65, Cited 3 April 2010.Google Scholar
  63. Scheel T, Dörfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by Al stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64–74Google Scholar
  64. Scheel T, Haumaier L, Ellerbrock RH et al (2008) Properties of organic matter precipitated from acidic forest soil solutions. Org Geochem 39:1439–1453CrossRefGoogle Scholar
  65. Schindler DW (1999) The mysterious missing sink. Nature 398:105–107CrossRefGoogle Scholar
  66. Seifritz W (1993) Should we store carbon in charcoal? Int J Hydrogen Energy 18:405–407CrossRefGoogle Scholar
  67. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization of soil organic matter: implications for C-saturation soils. Plant Soil 241:155–176CrossRefGoogle Scholar
  68. Sombroek WG, Nachtergaele FO, Hebel A (1993) Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–426Google Scholar
  69. Steiner C, Teixeira WG, Lehmann J et al (2007) Long term effect of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290CrossRefGoogle Scholar
  70. Stephens BB, Gurney KR, Tans PP et al (2007) Weak Northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735CrossRefGoogle Scholar
  71. Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan Publications Ltd, Sterling, pp 85–105Google Scholar
  72. Titirici M-M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789CrossRefGoogle Scholar
  73. Van Zwieten L, Singh B, Joseph S et al (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan Publications Ltd, Sterling, pp 227–249Google Scholar
  74. Van-Camp L, Bujarrabal B, Gentile, AR et al (2004) Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. EUR 21319 EN/3, European Comission. LuxembourgGoogle Scholar
  75. Veizer J (1976) Evolution of ores of sedimentary affiliation during geologic history: Relations to the general tendencies in evolution of the crust, hydrosphere, atmosphere and biosphere. In: Wolf KH (ed) Handbook of Strata-bound and Stratiform Ore Deposits. Elsevier. 3:1–41Google Scholar
  76. Verde JR, Camps Arbestain M, Macías F (2005) Expression of andic properties in soils from Galicia (NW Spain) under forest and agricultural use. Eur J Soil Sci 56:53–63CrossRefGoogle Scholar
  77. von Lützow M, Kögel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions. Eur J Soil Sci 57:426–445CrossRefGoogle Scholar
  78. von Lützow M, Kögel-Knabner I, Ludwig B et al (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124CrossRefGoogle Scholar
  79. Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629CrossRefGoogle Scholar
  80. Xunta de Galicia (ed) (2008) Consellería de Medio Ambiente e Desenvolvemento Sostible. Resolución de 8 de xaneiro de 2008 referente a elaboración de solos (Tecnosoles) derivados de residuos. DOGA Nº 18, 1499–1511Google Scholar
  81. Yao FX, Macías F, Santesteban A et al (2009a) Influence of the acid buffering capacity of different types of technosols on the chemistry of their leachates. A column study. Chemosphere 74:250–258CrossRefGoogle Scholar
  82. Yao FX, Macías F, Virgel S et al (2009b) Chemical changes in heavy metals in the leachates from Technosols. Chemosphere 77:29–35CrossRefGoogle Scholar
  83. Zachos J, Pagan M, Sloan L et al (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  84. Zhang R, Delworth TL, Held IM (2007) Can the Atlantic ocean drive the observed multidecadal variability in Northern hemisphere mean temperature? Geophys Res Lett 34:L02709CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Departamento de Edafología y Química Agrícola, Facultad de BiologíaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Institute of Natural ResourcesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations