Syntactical Informational Structural Realism

Article
  • 38 Downloads

Abstract

Luciano Floridi’s informational structural realism (ISR) takes a constructionist attitude towards the problems of epistemology and metaphysics, but the question of the nature of the semantical component of his view remains vexing. In this paper, I propose to dispense with the semantical component of ISR completely. I outline a Syntactical version of ISR (SISR for short). The unified entropy-based framework of information has been adopted as the groundwork of SISR. To establish its realist component, SISR should be able to dissolve the latching problem. We have to be able to account for the informational structures–reality relationship in the absence of the standard semantical resources. The paper offers a pragmatic solution to the latching problem. I also take pains to account for the naturalistic plausibility of this solution by grounding it in the recent computational neuroscience of the predictive coding and the free energy principle.

Keywords

Informational structural realism Free energy principle The unified entropy-based framework of information Predictive processing Syntactical informational structural realism 

References

  1. Adriaans, P. (2010). A critical analysis of Floridi’s theory of semantic information. Knowledge, Technology & Policy, 23(1–2), 41–56.  https://doi.org/10.1007/s12130-010-9097-5.CrossRefGoogle Scholar
  2. Beni, M. D. (2016). Epistemic informational structural realism. Minds and Machines, 26(4), 323–339.  https://doi.org/10.1007/s11023-016-9403-4.CrossRefGoogle Scholar
  3. Bruineberg, J., Kiverstein, J., & Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese.  https://doi.org/10.1007/s11229-016-1239-1.Google Scholar
  4. Carnap, R. (1937). The logical syntax of language. Edited by A. Smeaton (trans.). London: Kegan Paul Trench, Trubner & Co.Google Scholar
  5. Carnap, R. (1942). Introduction to semantics: And formalization of logic. Cambridge, MA: Harvard University Press.MATHGoogle Scholar
  6. Carnap, R. (1955). Meaning and synonymy in natural languages. Philosophical Studies.  https://doi.org/10.1007/BF02330951.MATHGoogle Scholar
  7. Clark, A. (2012). Dreaming the whole cat: Generative models, predictive processing, and the enactivist conception of perceptual experience. Mind, 121(483), 753–771.  https://doi.org/10.1093/mind/fzs106.CrossRefGoogle Scholar
  8. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.  https://doi.org/10.1017/s0140525x12000477.MathSciNetCrossRefGoogle Scholar
  9. Clark, A. (2015). Radical predictive processing. The Southern Journal of Philosophy, 53(S1), 3–27.  https://doi.org/10.1111/sjp.12120.MathSciNetCrossRefGoogle Scholar
  10. Clark, A. (2016a). Surfing uncertainty. Oxford: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780190217013.001.0001.CrossRefGoogle Scholar
  11. Clark, A. (2016b). Busting out: Predictive brains, embodied minds, and the puzzle of the evidentiary veil. Noûs,.  https://doi.org/10.1111/nous.12140.Google Scholar
  12. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19.  https://doi.org/10.1093/analys/58.1.7.CrossRefGoogle Scholar
  13. da Costa, Newton C. A., Bueno, O., & French, S. (1998). The logic of pragmatic truth. Journal of Philosophical Logic, 27(6), 603–620.  https://doi.org/10.1023/a:1004304228785.MathSciNetCrossRefMATHGoogle Scholar
  14. da Costa, Newton C. A., & French, S. (2003). Science and partial truth. Oxford: Oxford University Press.  https://doi.org/10.1093/019515651x.001.0001.CrossRefGoogle Scholar
  15. Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz machine. Neural Computation, 7(5), 889–904.CrossRefGoogle Scholar
  16. Elias, P., Carnap, R., & Bar-Hillel, Y. (1954). An outline of a theory of semantic information. The Journal of Symbolic Logic, 19(3), 230.  https://doi.org/10.2307/2268645.CrossRefGoogle Scholar
  17. Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202–209.  https://doi.org/10.1016/j.tics.2013.03.006.CrossRefGoogle Scholar
  18. Feigl, H. (1950). Existential hypotheses. Realistic versus phenomenalistic interpretations. Philosophy of Science, 17(1), 35–62.CrossRefGoogle Scholar
  19. Floridi, L. (2004). Outline of a theory of strongly semantic information. Minds and Machines, 14(2), 197–221.  https://doi.org/10.1023/b:mind.0000021684.50925.c9.CrossRefGoogle Scholar
  20. Floridi, L. (2005). Is semantic information meaningful data? Philosophy and Phenomenological Research, 70(2), 351–370.  https://doi.org/10.1111/j.1933-1592.2005.tb00531.x.CrossRefGoogle Scholar
  21. Floridi, L. (2008). A defence of informational structural realism. Synthese.  https://doi.org/10.1007/s11229-007-9163-z.Google Scholar
  22. Floridi, L. (2009). Against digital ontology. Synthese, 168(1), 151–178.  https://doi.org/10.1007/s11229-008-9334-6.MathSciNetCrossRefMATHGoogle Scholar
  23. Floridi, L. (2011a). Semantic information and the correctness theory of truth. Erkenntnis, 74(2), 147–175.  https://doi.org/10.1007/s10670-010-9249-8.CrossRefMATHGoogle Scholar
  24. Floridi, L. (2011b). A defence of constructionism: Philosophy as conceptual engineering. Metaphilosophy, 42(3), 282–304.  https://doi.org/10.1111/j.1467-9973.2011.01693.x.CrossRefGoogle Scholar
  25. Floridi, L. (2014). Perception and testimony as data providers. Logique et Analyse, 57(226), 3421–3438.Google Scholar
  26. Floridi, L. (2016). What a maker’s knowledge could be. Synthese.  https://doi.org/10.1007/s11229-016-1232-8.MathSciNetGoogle Scholar
  27. Floridi, L. (2017). A plea for non-naturalism as constructionism. Minds and Machines.  https://doi.org/10.1007/s11023-017-9422-9.Google Scholar
  28. French, S. (2014). The structure of the world: Metaphysics and representation. Oxford: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780199684847.001.0001.CrossRefGoogle Scholar
  29. French, S. (2015). (Structural) realism and its representational vehicles. Synthese.  https://doi.org/10.1007/s11229-015-0879-x.Google Scholar
  30. French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13(2), 103–121.  https://doi.org/10.1080/02698599908573612.MathSciNetCrossRefMATHGoogle Scholar
  31. French, S., & Ladyman, J. (2003). Remodelling structural realism: Quantum physics and the metaphysics of structure. Synthese, 136(1), 31–56.  https://doi.org/10.1023/A:1024156116636.MathSciNetCrossRefMATHGoogle Scholar
  32. French, S., & Ladyman, J. (2011). In defence of ontic structural realism. Scientific Structuralism, 281, 25–42.  https://doi.org/10.1007/978-90-481-9597-8_2.Google Scholar
  33. Friston, K. J. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.  https://doi.org/10.1038/nrn2787.CrossRefGoogle Scholar
  34. Friston, K. J. (2012). Predictive coding, precision and synchrony. Cognitive Neuroscience, 3(3–4), 238–239.  https://doi.org/10.1080/17588928.2012.691277.CrossRefGoogle Scholar
  35. Friston, K. J., & Price, C. J. (2001). Generative models, brain function and neuroimaging. Scandinavian Journal of Psychology, 42(3), 167–177.CrossRefGoogle Scholar
  36. Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3), 417–458.  https://doi.org/10.1007/s11229-007-9237-y.CrossRefGoogle Scholar
  37. Frith, C. D. (2007). Making up the mind : How the brain creates our mental world. Malden: Blackwell Pub.Google Scholar
  38. Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1–3), 335–346.  https://doi.org/10.1016/0167-2789(90)90087-6.CrossRefGoogle Scholar
  39. Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780199682737.001.0001.CrossRefGoogle Scholar
  40. Hohwy, J. (2014). The self-evidencing brain. Noûs, 50(2), 259–285.  https://doi.org/10.1111/nous.12062.CrossRefGoogle Scholar
  41. Hohwy, J. (2017). How to entrain your evil demon. In T. Metzinger & W. Wiese (Eds.), Philosophy and predictive processing. MIND Group: Frankfurt, Frankfurt am Main.  https://doi.org/10.15502/9783958573048.Google Scholar
  42. Morris, C. (1938). Foundations of the theory of signs. Chicago, Ill: University of Chicago Press.Google Scholar
  43. Oller, J. W. (1972). On the relation between syntax, semantics, and pragmatics. Linguistics, 10(83), 43–55.  https://doi.org/10.1515/ling.1972.10.83.43.CrossRefGoogle Scholar
  44. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.  https://doi.org/10.1038/4580.CrossRefGoogle Scholar
  45. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.MATHGoogle Scholar
  46. Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London B: Biological Sciences, 216(1205), 427–459.CrossRefGoogle Scholar
  47. Stegmüller, W. (1979). The structuralist view of theories. Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-95360-6.CrossRefMATHGoogle Scholar
  48. Suppe, F. (1998). Understanding scientific theories: An assessment of developments, 1969–1998. In Philosophy of Science Biennial Meetings of the Philosophy of Science Association. Part II: Symposia Papers (Vol. 67, pp. 102–115). http://www.jstor.org/stable/188661.
  49. Suppes, P. (1962). Models of data. In Logic, methodology, and philosophy of science: Proceedings of 1960 International Congress (pp. 252–261). Stanford U: Stanford University Press.Google Scholar
  50. Suppes, P. (1967). What is a scientific theory?” In S. Morgenbesser (Ed.), Philosophy of science today (pp. 55–67). New York: Basic Books. https://www.google.com/_/chrome/newtab?espv=2&ie=UTF-8.
  51. Taddeo, M., & Floridi, L. (2005). Solving the symbol grounding problem: A critical review of fifteen years of research. Journal of Experimental & Theoretical Artificial Intelligence, 17(4), 419–445.CrossRefGoogle Scholar
  52. Taddeo, M., & Floridi, L. (2007). A praxical solution of the symbol grounding problem. Minds and Machines, 17(4), 369–389.  https://doi.org/10.1007/s11023-007-9081-3.CrossRefGoogle Scholar
  53. Tarski, A. (1944). The semantic conception of truth: And the foundations of semantics. Philosophy and Phenomenological Research, 4(3), 341.  https://doi.org/10.2307/2102968.MathSciNetCrossRefMATHGoogle Scholar
  54. Uebel, T. (2013). Pragmatics in Carnap and Morris and the bipartite metatheory conception. Erkenntnis, 78(3), 523–546.  https://doi.org/10.1007/s10670-011-9352-5.CrossRefMATHGoogle Scholar
  55. van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press.  https://doi.org/10.1093/0198244274.001.0001.CrossRefGoogle Scholar
  56. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind : Cognitive science and human experience. Cambridge: MIT Press.Google Scholar
  57. Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43(1–2), 99–124.  https://doi.org/10.1111/j.1746-8361.1989.tb00933.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Philosophy of Science Group, Department of Management, Science and TechnologyAmirkabir University of TechnologyTehranIran

Personalised recommendations