Advertisement

Minds and Machines

, Volume 28, Issue 1, pp 191–235 | Cite as

Neural Representations Observed

  • Eric Thomson
  • Gualtiero Piccinini
Article

Abstract

The historical debate on representation in cognitive science and neuroscience construes representations as theoretical posits and discusses the degree to which we have reason to posit them. We reject the premise of that debate. We argue that experimental neuroscientists routinely observe and manipulate neural representations in their laboratory. Therefore, neural representations are as real as neurons, action potentials, or any other well-established entities in our ontology.

Keywords

Representation Neural representation Neuroscience Experiment Teleosemantics 

Notes

Acknowledgements

ET is grateful to Joseph Rouse, Drew Christie, Matteo Colombo, Willem deVries, Val Dusek, Bryce Huebner, Peter Mandik, Mark Okrent, Carl Sachs, Joey O’Doherty, and Paul Thompson for discussion and comments on previous versions. GP is grateful to Daniel Kramer for correspondence on the topic of this article. This material is partially based upon work supported by the National Science Foundation under Grant No. SES-1654982 to Gualtiero Piccinini.

References

  1. Adams, F., & Aizawa, K. (2010). Causal theories of mental content. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2010 Edition). https://plato.stanford.edu/archives/spr2010/entries/content-causal/.
  2. Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology, 52(6), 1106–1130.CrossRefGoogle Scholar
  3. Alexander, G. E., & Crutcher, M. D. (1990). Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology, 64(1), 133–150.CrossRefGoogle Scholar
  4. Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20, 303–330.  https://doi.org/10.1146/annurev.neuro.20.1.303.CrossRefGoogle Scholar
  5. Anscombe, E. (1957). Intention. Ithaca, NY: Cornell University Press.Google Scholar
  6. Armstrong, D. M. (1973). Belief, truth, and knowledge. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Awater, H., Kerlin, J. R., Evans, K. K., & Tong, F. (2005). Cortical representation of space around the blind spot. Journal of Neurophysiology, 94(5), 3314–3324.  https://doi.org/10.1152/jn.01330.2004.CrossRefGoogle Scholar
  8. Azim, E., Jiang, J., Alstermark, B., & Jessell, T. M. (2014). Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature, 508(7496), 357–363.  https://doi.org/10.1038/nature13021.CrossRefGoogle Scholar
  9. Azzi, J. C., Gattass, R., Lima, B., Soares, J. G., & Fiorani, M. (2015). Precise visuotopic organization of the blind spot representation in primate V1. Journal of Neurophysiology, 113(10), 3588–3599.  https://doi.org/10.1152/jn.00418.2014.CrossRefGoogle Scholar
  10. Bartels, A. (2006). Defending the structural concept of representation. Theoria, 21(55), 7–19.MathSciNetMATHGoogle Scholar
  11. Bastian, J. (1996). Plasticity in an electrosensory system. I. General features of a dynamic sensory filter. Journal of Neurophysiology, 76(4), 2483–2496.CrossRefGoogle Scholar
  12. Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative and Physiological Psychology, 90(3), 293–302.CrossRefGoogle Scholar
  13. Baylor, D. A. (1987). Photoreceptor signals and vision. Proctor lecture. Investigative Ophthalmology & Visual Science, 28(1), 34–49.Google Scholar
  14. Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. London: Routledge.Google Scholar
  15. Bechtel, W. (2016). Investigating neural representations: The tale of place cells. Synthese, 193(5), 1287–1321.CrossRefGoogle Scholar
  16. Beer, R., & Williams, P. (2014). Information processing and dynamics in minimally cognitive agents. Cognitive Science, 39, 1–38.CrossRefGoogle Scholar
  17. Bell, C. C. (1981). An efference copy which is modified by reafferent input. Science, 214(4519), 450–453.CrossRefGoogle Scholar
  18. Bell, C. C. (1982). Properties of a modifiable efference copy in an electric fish. Journal of Neurophysiology, 47(6), 1043–1056.CrossRefGoogle Scholar
  19. Bell, C. C., Libouban, S., & Szabo, T. (1983). Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. Journal of Comparative Neurology, 216(3), 327–338.  https://doi.org/10.1002/cne.902160309.CrossRefGoogle Scholar
  20. Bialek, W., & Rieke, F. (1992). Reliability and information transmission in spiking neurons. Trends in Neurosciences, 15(11), 428–434.CrossRefGoogle Scholar
  21. Bickle, J. (2003). Philosophy and neuroscience: A Ruthlessly reductive approach. Dordrecht: Kluwer.CrossRefGoogle Scholar
  22. Blasdel, G. G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience, 12(8), 3139–3161.Google Scholar
  23. Bolhuis, J. J., & Everaert, M. (2013). Birdsong, speech, and language: Exploring the evolution of mind and brain. Cambridge, MA: MIT Press.Google Scholar
  24. Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J., Rauffenbart, C., Abbas, A. I., et al. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nature Neuroscience, 20(7), 987–996.  https://doi.org/10.1038/nn.4568.CrossRefGoogle Scholar
  25. Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193(5), 1509–1534.CrossRefGoogle Scholar
  26. Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157–189.  https://doi.org/10.1146/annurev.neuro.26.041002.131052.CrossRefGoogle Scholar
  27. Bourget, D., & Mendelovici, A. (2017). Phenomenal intentionality. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2017 Edition) (forthcoming). https://plato.stanford.edu/archives/spr2017/entries/phenomenal-intentionality/.
  28. Brainard, M. S., & Doupe, A. J. (2002). What songbirds teach us about learning. Nature, 417(6886), 351–358.  https://doi.org/10.1038/417351a.CrossRefGoogle Scholar
  29. Brandom, R. B. (1994). Making it explicit: Reasoning, representing, and discursive commitment. Cambridge, MA: Harvard University Press.Google Scholar
  30. Brecht, M., Schneider, M., Sakmann, B., & Margrie, T. W. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 427(6976), 704–710.  https://doi.org/10.1038/nature02266.CrossRefGoogle Scholar
  31. Briggman, K. L., Helmstaedter, M., & Denk, W. (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature, 471(7337), 183–188.  https://doi.org/10.1038/nature09818.CrossRefGoogle Scholar
  32. Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.CrossRefGoogle Scholar
  33. Brooks, J. X., Carriot, J., & Cullen, K. E. (2015). Learning to expect the unexpected: Rapid updating in primate cerebellum during voluntary self-motion. Nature Neuroscience, 18(9), 1310–1317.  https://doi.org/10.1038/nn.4077.CrossRefGoogle Scholar
  34. Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2004). Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics, 20(4), 367–395.CrossRefGoogle Scholar
  35. Bullock, T. H. (1982). Electroreception. Annual Review of Neuroscience, 5, 121–170.  https://doi.org/10.1146/annurev.ne.05.030182.001005.CrossRefGoogle Scholar
  36. Burge, T. (2010). Origins of objectivity. Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Burnston, D. C. (2016a). Computational neuroscience and localized neural function. Synthese, 193(12), 3741–3762.MathSciNetCrossRefGoogle Scholar
  38. Burnston, D. C. (2016b). A contextualist approach to functional localization in the brain. Biology and Philosophy, 31(4), 527–550.CrossRefGoogle Scholar
  39. Butterfill, S. A., & Sinigaglia, C. (2014). Intention and motor representation in purposive action. Philosophy and Phenomenological Research, 88(1), 119–145.CrossRefGoogle Scholar
  40. Carlson, B. A. (2002). Neuroanatomy of the mormyrid electromotor control system. Journal of Comparative Neurology, 454(4), 440–455.  https://doi.org/10.1002/cne.10462.CrossRefGoogle Scholar
  41. Castro, A. J. (1972). The effects of cortical ablations on digital usage in the rat. Brain Research, 37(2), 173–185.CrossRefGoogle Scholar
  42. Cerminara, N. L., Apps, R., & Marple-Horvat, D. E. (2009). An internal model of a moving visual target in the lateral cerebellum. Journal of Physiology, 587(2), 429–442.  https://doi.org/10.1113/jphysiol.2008.163337.CrossRefGoogle Scholar
  43. Chang, H. (2004). Inventing temperature: Measurement and scientific progress. New York: Oxford University Press.CrossRefGoogle Scholar
  44. Chang, H. T., Ruch, T. C., & Ward, A. A., Jr. (1947). Topographical representation of muscles in motor cortex of monkeys. Journal of Neurophysiology, 10(1), 39–56.CrossRefGoogle Scholar
  45. Chang, L., & Tsao, D. Y. (2017). The code for facial identity in the primate brain. Cell, 169(6), 1013–1028.  https://doi.org/10.1016/j.cell.2017.05.011.CrossRefGoogle Scholar
  46. Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.Google Scholar
  47. Chomsky, N. (1995). Language and nature. Mind, 104, 1–61.CrossRefGoogle Scholar
  48. Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the mind-brain. Cambridge, MA: The MIT Press.Google Scholar
  49. Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.Google Scholar
  50. Churchland, P. M. (2012). Plato’s camera: How the physical brain captures a landscape of abstract universals. Cambridge, MA: MIT Press.Google Scholar
  51. Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I., & Shenoy, K. V. (2010). Cortical preparatory activity: Representation of movement or first cog in a dynamical machine? Neuron, 68(3), 387–400.  https://doi.org/10.1016/j.neuron.2010.09.015.CrossRefGoogle Scholar
  52. Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.MATHGoogle Scholar
  53. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.  https://doi.org/10.1146/annurev.neuro.051508.135409.CrossRefGoogle Scholar
  54. Clark, A. (1993). Associative engines: Connectionism, concepts, and representational change. Cambridge, MA: MIT Press.Google Scholar
  55. Clark, A. (1997). The dynamical challenge. Cognitive Science, 21, 461–481.CrossRefGoogle Scholar
  56. Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  57. Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401–431.CrossRefGoogle Scholar
  58. Collins, T. (2010). Extraretinal signal metrics in multiple-saccade sequences. Journal of Vision, 10(14), 7.  https://doi.org/10.1167/10.14.7.CrossRefGoogle Scholar
  59. Colombo, M. (2014). Neural representationalism, the hard problem of content and vitiated verdicts. A reply to Hutto & Myin (2013). Phenomenology and the Cognitive Sciences, 13(2), 257–274.CrossRefGoogle Scholar
  60. Confais, J., Kim, G., Tomatsu, S., Takei, T., & Seki, K. (2017). Nerve-specific input modulation to spinal neurons during a motor task in the monkey. Journal of Neuroscience, 37(10), 2612–2626.  https://doi.org/10.1523/JNEUROSCI.2561-16.2017.CrossRefGoogle Scholar
  61. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley.MATHGoogle Scholar
  62. Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.Google Scholar
  63. Crapse, T. B., & Sommer, M. A. (2008). Corollary discharge across the animal kingdom. Nature Reviews Neuroscience, 9(8), 587–600.  https://doi.org/10.1038/nrn2457.CrossRefGoogle Scholar
  64. Craver, C. F. (2007). Explaining the brain. Oxford: Oxford University Press.CrossRefGoogle Scholar
  65. Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA: MIT Press.Google Scholar
  66. Cummins, R. (1989). Meaning and mental representation. Cambridge, MA: MIT Press.Google Scholar
  67. Cummins, R. (1996). Representations, targets, and attitudes. Cambridge, MA: MIT Press.Google Scholar
  68. Daniel, P. M., & Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology, 159, 203–221.CrossRefGoogle Scholar
  69. Darling, W. G., Pizzimenti, M. A., & Morecraft, R. J. (2011). Functional recovery following motor cortex lesions in non-human primates: Experimental implications for human stroke patients. Journal of Integrative Neuroscience, 10(3), 353–384.  https://doi.org/10.1142/S0219635211002737.CrossRefGoogle Scholar
  70. DeAngelis, G. C., & Newsome, W. T. (1999). Organization of disparity-selective neurons in macaque area MT. Journal of Neuroscience, 19(4), 1398–1415.Google Scholar
  71. Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2(11), e329.  https://doi.org/10.1371/journal.pbio.0020329.CrossRefGoogle Scholar
  72. Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press.Google Scholar
  73. Dennett, D. C. (1991). Consciousness explained. Boston: Little, Brown and Co.Google Scholar
  74. Ding, H., Smith, R. G., Poleg-Polsky, A., Diamond, J. S., & Briggman, K. L. (2016). Species-specific wiring for direction selectivity in the mammalian retina. Nature, 535(7610), 105–110.  https://doi.org/10.1038/nature18609.CrossRefGoogle Scholar
  75. Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.  https://doi.org/10.1146/annurev.neuro.22.1.567.CrossRefGoogle Scholar
  76. Dow, B. M., Snyder, A. Z., Vautin, R. G., & Bauer, R. (1981). Magnification factor and receptive field size in foveal striate cortex of the monkey. Experimental Brain Research, 44(2), 213–228.CrossRefGoogle Scholar
  77. Dowling, J. E. (2012). The retina: An approachable part of the brain (Rev. Ed. ed.). Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
  78. Downey, A. (2017). Predictive processing and the representation wars: A victory for the eliminativist (via fictionalism). Synthese.  https://doi.org/10.1007/s11229-017-1442-8.Google Scholar
  79. Dretske, F. I. (1981). Knowledge & the flow of information (1st ed.). Cambridge, MA: MIT Press.MATHGoogle Scholar
  80. Dretske, F. I. (1988). Explaining behavior: Reasons in a world of causes. Cambridge, MA: MIT Press.Google Scholar
  81. Egan, F. (2014). How to think about mental content. Philosophical Studies, 170(1), 115–135.MathSciNetCrossRefGoogle Scholar
  82. Eliasmith, C. (2001). Attractive and in-discrete: A critique of two putative virtues of the dynamicist theory of mind. Minds and Machines, 11, 417–426.CrossRefGoogle Scholar
  83. Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M., & Cunningham, J. P. (2016). Reorganization between preparatory and movement population responses in motor cortex. Nature Communications, 7, 13239.  https://doi.org/10.1038/ncomms13239.CrossRefGoogle Scholar
  84. Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron, 75(4), 556–571.  https://doi.org/10.1016/j.neuron.2012.08.001.CrossRefGoogle Scholar
  85. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.CrossRefGoogle Scholar
  86. Ferretti, G. (2016). Through the forest of motor representations. Consciousness and Cognition, 43, 177–196.  https://doi.org/10.1016/j.concog.2016.05.013.CrossRefGoogle Scholar
  87. Fetz, E. E. (1992). Are movement parameters recognizably coded in the activity of single neurons? Behavioral and Brain Sciences, 15, 679–690.Google Scholar
  88. Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.Google Scholar
  89. Fodor, J. A. (1981). Representations: Philosophical essays on the foundations of cognitive science. Cambridge, MA: MIT Press.Google Scholar
  90. Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. Cambridge, MA: MIT Press.Google Scholar
  91. Fodor, J. A. (1990). A theory of content and other essays. Cambridge, MA: MIT Press.Google Scholar
  92. Fodor, J. A. (2008). LOT 2: The language of thought revisited. Oxford: Oxford University Press.CrossRefGoogle Scholar
  93. Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.CrossRefGoogle Scholar
  94. Franklin, A. (2002). Selectivity and discord: Two problems of experiment. Pittsburgh: University of Pittsburgh Press.Google Scholar
  95. Franklin, A. (2013). Shifting standards: Experiments in particle physics in the twentieth century. Pittsburgh: University of Pittsburgh Press.Google Scholar
  96. Franklin, A., & Perovic, S. (2016). Experiment in physics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/physics-experiment/.
  97. Frege, G. (1892). Über Sinn und Bedeutung. In Zeitschrift für Philosophie und philosophische Kritik (Vol. 100, pp. 25–50). Translated as ‘On Sense and Reference’ by M. Black in Translations from the Philosophical Writings of Gottlob Frege, P. Geach and M. Black (eds. and trans.), Oxford: Blackwell, third edition, 1980.Google Scholar
  98. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331–349.  https://doi.org/10.1152/jn.1989.61.2.331.CrossRefGoogle Scholar
  99. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993a). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas”. Journal of Neuroscience, 13(4), 1479–1497.Google Scholar
  100. Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993b). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature, 365(6448), 753–756.  https://doi.org/10.1038/365753a0.CrossRefGoogle Scholar
  101. Fuster, J. M., & Alexander, G. E. (1970). Delayed response deficit by cryogenic depression of frontal cortex. Brain Research, 20(1), 85–90.CrossRefGoogle Scholar
  102. Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652–654.CrossRefGoogle Scholar
  103. Galison, P. (1987). How experiments end. Chicago: University of Chicago Press.Google Scholar
  104. Galison, P. (1997). Image and logic. Chicago: University of Chicago Press.Google Scholar
  105. Gallistel, C. R. (1990). Representations in animal cognition: An introduction. Cognition, 37(1–2), 1–22.CrossRefGoogle Scholar
  106. Gallistel, C. R. (2008). Learning and representation. In J. Byrne (Ed.), Learning and memory: A comprehensive reference (pp. 227–242). Amsterdam: Elsevier.CrossRefGoogle Scholar
  107. Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. New York: Wiley.CrossRefGoogle Scholar
  108. Gandhi, N. J., & Katnani, H. A. (2011). Motor functions of the superior colliculus. Annual Review of Neuroscience, 34, 205–231.  https://doi.org/10.1146/annurev-neuro-061010-113728.CrossRefGoogle Scholar
  109. Ganguly, K., & Carmena, J. M. (2009). Emergence of a stable cortical map for neuroprosthetic control. PLoS Biology, 7(7), e1000153.  https://doi.org/10.1371/journal.pbio.1000153.CrossRefGoogle Scholar
  110. Gardenfors, P. (1996). Cued and detached representations in animal cognition. Behavioral Processes, 35, 263–273.CrossRefGoogle Scholar
  111. Gardenfors, P. (2005). The detachment of thought. In C. Erneling & D. Johnson (Eds.), Mind as a scientific subject: Between brain and culture (pp. 323–341). Oxford: OUP.Google Scholar
  112. Garzon, F. C. (2008). Towards a general theory of antirepresentationalism. The British Journal for the Philosophy of Science, 59(3), 259–292.CrossRefGoogle Scholar
  113. Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.  https://doi.org/10.1016/j.tics.2011.11.014.CrossRefGoogle Scholar
  114. Georgopoulos, A. P., & Ashe, J. (2000). One motor cortex, two different views. Nature Neuroscience, 3(10), 963.  https://doi.org/10.1038/79882. (author reply 964–965).CrossRefGoogle Scholar
  115. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2(11), 1527–1537.Google Scholar
  116. Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.CrossRefGoogle Scholar
  117. Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5), 350–363.  https://doi.org/10.1038/nrn3476.CrossRefGoogle Scholar
  118. Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 193, 559–582.CrossRefGoogle Scholar
  119. Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology and Philosophy, 32(3), 337–355.CrossRefGoogle Scholar
  120. Godfrey-Smith, P. (1996). Complexity and the function of mind in nature. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  121. Goldberg, M. E., & Wurtz, R. H. (1972). Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. Journal of Neurophysiology, 35(4), 542–559.CrossRefGoogle Scholar
  122. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.CrossRefGoogle Scholar
  123. Graziano, M. S. (2016). Ethological action maps: A paradigm shift for the motor cortex. Trends in Cognitive Sciences, 20(2), 121–132.  https://doi.org/10.1016/j.tics.2015.10.008.CrossRefGoogle Scholar
  124. Graziano, M. S., Taylor, C. S., Moore, T., & Cooke, D. F. (2002). The cortical control of movement revisited. Neuron, 36(3), 349–362.CrossRefGoogle Scholar
  125. Grice, P. (1957). Meaning. Philosophical Review, 66, 377–388.CrossRefGoogle Scholar
  126. Griffin, D. M., Hoffman, D. S., & Strick, P. L. (2015). Corticomotoneuronal cells are “functionally tuned”. Science, 350(6261), 667–670.  https://doi.org/10.1126/science.aaa8035.CrossRefGoogle Scholar
  127. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396. (discussion 396–442).Google Scholar
  128. Hacking, I. (1983). Representing and intervening. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  129. Hahnloser, R. H., & Kotowicz, A. (2010). Auditory representations and memory in birdsong learning. Current Opinion in Neurobiology, 20(3), 332–339.  https://doi.org/10.1016/j.conb.2010.02.011.CrossRefGoogle Scholar
  130. Hallett, M. (2000). Transcranial magnetic stimulation and the human brain. Nature, 406(6792), 147–150.  https://doi.org/10.1038/35018000.CrossRefGoogle Scholar
  131. Hartmann, K., Thomson, E. E., Zea, I., Yun, R., Mullen, P., Canarick, J., et al. (2016). Embedding a panoramic representation of infrared light in the adult rat somatosensory cortex through a sensory neuroprosthesis. Journal of Neuroscience, 36(8), 2406–2424.  https://doi.org/10.1523/JNEUROSCI.3285-15.2016.CrossRefGoogle Scholar
  132. Heiligenberg, W., & Bastian, J. (1984). The electric sense of weakly electric fish. Annual Review of Physiology, 46, 561–583.  https://doi.org/10.1146/annurev.ph.46.030184.003021.CrossRefGoogle Scholar
  133. Herculano-Houzel, S. (2010). Coordinated scaling of cortical and cerebellar numbers of neurons. Frontiers in Neuroanatomy, 4, 12.  https://doi.org/10.3389/fnana.2010.00012.Google Scholar
  134. Hewitt, A. L., Popa, L. S., Pasalar, S., Hendrix, C. M., & Ebner, T. J. (2011). Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks. Journal of Neurophysiology, 106(5), 2232–2247.  https://doi.org/10.1152/jn.00886.2010.CrossRefGoogle Scholar
  135. Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., et al. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–375.  https://doi.org/10.1038/nature11076.CrossRefGoogle Scholar
  136. Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside a nerve fibre. Nature, 144, 710–711.  https://doi.org/10.1038/144710a0.CrossRefGoogle Scholar
  137. Hohwy, J. (2013). The predictive mind. New York: Oxford University Press.CrossRefGoogle Scholar
  138. Holdefer, R. N., & Miller, L. E. (2002). Primary motor cortical neurons encode functional muscle synergies. Experimental Brain Research, 146(2), 233–243.  https://doi.org/10.1007/s00221-002-1166-x.CrossRefGoogle Scholar
  139. Horgan, S., & Tienson, J. (1992). Cognitive systems as dynamical systems. Topoi, 11, 27–43.CrossRefGoogle Scholar
  140. Horgan, T., & Tienson, J. (1996). Connectionism and the philosophy of psychology. Cambridge, MA: MIT Press.Google Scholar
  141. Horgan, T., & Tienson, J. (2002). The intentionality of phenomenology and the phenomenology of intentionality. In D. Chalmers (Ed.), Philosophy of mind: Classical and contemporary readings (pp. 520–933). Oxford: Oxford University Press.Google Scholar
  142. Horsley, V. (1907). Dr. Hughlings Jackson’s views of the functions of the cerebellum, as Illustrated by recent research. The British Medical Journal, 1(2414), 803–808.CrossRefGoogle Scholar
  143. Horsley, V. (1909). The linacre lecture on the function of the so-called motor area of the Brain. The British Medical Journal, 2(2533), 121–132.CrossRefGoogle Scholar
  144. Hotton, S., & Yoshimi, J. (2010). Extending dynamical systems theory to model embodied cognition. Cognitive Science, 35, 444–479.MATHCrossRefGoogle Scholar
  145. Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5(2), 95–110.CrossRefGoogle Scholar
  146. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195(1), 215–243.CrossRefGoogle Scholar
  147. Hubel, D. H., & Wiesel, T. N. (2005). Brain and visual perception: The story of a 25-year collaboration. New York, NY: Oxford University Press.Google Scholar
  148. Hughlings Jackson, J. (1867). Remarks on the disorderly movements of chorea and convulsion, and on localisation. Medical Times and Gazette, 2, 669–670.Google Scholar
  149. Hughlings Jackson, J. (1868). Notes on the physiology and pathology of the nervous system. Medical Times and Gazette, 2, 696.Google Scholar
  150. Hupe, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P., & Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394(6695), 784–787.  https://doi.org/10.1038/29537.CrossRefGoogle Scholar
  151. Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism. Cambridge, MA: MIT Press.Google Scholar
  152. Hutto, D. D., & Myin, E. (2014). Neural representations not needed-no more pleas, please. Phenomenology and the Cognitive Sciences, 13(2), 241–256.CrossRefGoogle Scholar
  153. Inoue, S., & Matsuzawa, T. (2007). Working memory of numerals in chimpanzees. Current Biology, 17(23), R1004–R1005.  https://doi.org/10.1016/j.cub.2007.10.027.CrossRefGoogle Scholar
  154. Isaac, A. (2013). Objective similarity and mental representation. Australasian Journal of Philosophy, 91(4), 683–704.CrossRefGoogle Scholar
  155. Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology, 7(2), 162–176.Google Scholar
  156. Johansson, R. S., & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurobiology, 2(6), 815–823.CrossRefGoogle Scholar
  157. Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285(5436), 2136–2139.CrossRefGoogle Scholar
  158. Kalaska, J. F. (2009). From intention to action: Motor cortex and the control of reaching movements. Advances in Experimental Medicine and Biology, 629, 139–178.  https://doi.org/10.1007/978-0-387-77064-2_8.CrossRefGoogle Scholar
  159. Kaminski, J., Call, J., & Fischer, J. (2004). Word learning in a domestic dog: evidence for “fast mapping”. Science, 304(5677), 1682–1683.  https://doi.org/10.1126/science.1097859.CrossRefGoogle Scholar
  160. Kandel, E. R. (2006). In search of memory: The emergence of a new science of mind (1st ed.). New York: W. W. Norton & Company.Google Scholar
  161. Kandel, E. R. (2013). Principles of neural science (5th ed.). New York: McGraw-Hill.Google Scholar
  162. Keijzer, F. A. (1998). Doing without representations which specify what to do. Philosophical Psychology, 11(3), 269–302.CrossRefGoogle Scholar
  163. Kennedy, A., Wayne, G., Kaifosh, P., Alvina, K., Abbott, L. F., & Sawtell, N. B. (2014). A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nature Neuroscience, 17(3), 416–422.  https://doi.org/10.1038/nn.3650.CrossRefGoogle Scholar
  164. Kiefer, A., & Hohwy, J. (2017). Content and misrepresentation in hierarchical generative models. Synthese.  https://doi.org/10.1007/s11229-017-1435-7.Google Scholar
  165. Kirsh, D. (2006). Implicit and explicit representation encyclopedia of cognitive science (pp. 1–4). New York: Wiley.Google Scholar
  166. Kitamura, T., Ogawa, S. K., Roy, D. S., Okuyama, T., Morrissey, M. D., Smith, L. M., et al. (2017). Engrams and circuits crucial for systems consolidation of a memory. Science, 356(6333), 73–78.  https://doi.org/10.1126/science.aam6808.CrossRefGoogle Scholar
  167. Koch, C. (2004). The quest for consciousness: A neurobiological approach. Denver, CO: Roberts and Co.Google Scholar
  168. Komatsu, H., Kinoshita, M., & Murakami, I. (2000). Neural responses in the retinotopic representation of the blind spot in the macaque V1 to stimuli for perceptual filling-in. Journal of Neuroscience, 20(24), 9310–9319.Google Scholar
  169. Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z Tierpsychol, 22(7), 770–783.Google Scholar
  170. Korenbrot, J. I. (2012). Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: Facts and models. Progress in Retinal and Eye Research, 31(5), 442–466.  https://doi.org/10.1016/j.preteyeres.2012.05.002.CrossRefGoogle Scholar
  171. Krahe, R., & Maler, L. (2014). Neural maps in the electrosensory system of weakly electric fish. Current Opinion in Neurobiology, 24(1), 13–21.  https://doi.org/10.1016/j.conb.2013.08.013.CrossRefGoogle Scholar
  172. Krauzlis, R. J., Lovejoy, L. P., & Zenon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165–182.  https://doi.org/10.1146/annurev-neuro-062012-170249.CrossRefGoogle Scholar
  173. Kriegel, U. (Ed.). (2013). Phenomenal intentionality. Oxford: Oxford University Press.Google Scholar
  174. Kustov, A. A., & Robinson, D. L. (1996). Shared neural control of attentional shifts and eye movements. Nature, 384(6604), 74–77.  https://doi.org/10.1038/384074a0.CrossRefGoogle Scholar
  175. Lacquaniti, F., Borghese, N. A., & Carrozzo, M. (1992). Internal models of limb geometry in the control of hand compliance. Journal of Neuroscience, 12(5), 1750–1762.Google Scholar
  176. Lamme, V. A., Super, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–535.CrossRefGoogle Scholar
  177. Leavitt, M. L., Mendoza-Halliday, D., & Martinez-Trujillo, J. C. (2017). Sustained activity encoding working memories: Not fully distributed. Trends in Neurosciences, 40(6), 328–346.  https://doi.org/10.1016/j.tins.2017.04.004.CrossRefGoogle Scholar
  178. Leopold, D. A. (2012). Primary visual cortex: Awareness and blindsight. Annual Review of Neuroscience, 35, 91–109.  https://doi.org/10.1146/annurev-neuro-062111-150356.CrossRefGoogle Scholar
  179. Leopold, D. A., & Logothetis, N. K. (1996). Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature, 379(6565), 549–553.  https://doi.org/10.1038/379549a0.CrossRefGoogle Scholar
  180. Lewis, J. E., & Kristan, W. B., Jr. (1998a). A neuronal network for computing population vectors in the leech. Nature, 391(6662), 76–79.  https://doi.org/10.1038/34172.CrossRefGoogle Scholar
  181. Lewis, J. E., & Kristan, W. B., Jr. (1998b). Representation of touch location by a population of leech sensory neurons. Journal of Neurophysiology, 80(5), 2584–2592.CrossRefGoogle Scholar
  182. Li, P. H., Field, G. D., Greschner, M., Ahn, D., Gunning, D. E., Mathieson, K., et al. (2014). Retinal representation of the elementary visual signal. Neuron, 81(1), 130–139.  https://doi.org/10.1016/j.neuron.2013.10.043.CrossRefGoogle Scholar
  183. Li, C. S., Padoa-Schioppa, C., & Bizzi, E. (2001). Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron, 30(2), 593–607.CrossRefGoogle Scholar
  184. Lisberger, S. G. (2009). Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience, 162(3), 763–776.  https://doi.org/10.1016/j.neuroscience.2009.03.059.CrossRefGoogle Scholar
  185. Liu, L. D., & Pack, C. C. (2017). The contribution of area MT to visual motion perception depends on training. Neuron, 95(2), 436–446.  https://doi.org/10.1016/j.neuron.2017.06.024.CrossRefGoogle Scholar
  186. Lloyd, D. G., & Besier, T. F. (2003). An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics, 36(6), 765–776.CrossRefGoogle Scholar
  187. Loar, B. (2003). Phenomenal intentionality as the basis of mental content. In M. Hahn & B. Ramberg (Eds.), Reflections and replies: Essays on the philosophy of Tyler Burge (pp. 229–258). Cambridge, MA: MIT Press.Google Scholar
  188. Makino, H., Ren, C., Liu, H., Kim, A. N., Kondapaneni, N., Liu, X., et al. (2017). Transformation of cortex-wide emergent properties during motor learning. Neuron, 94(4), 880–890.  https://doi.org/10.1016/j.neuron.2017.04.015.CrossRefGoogle Scholar
  189. Maley, C. (2017). Toward analog neural computation. Minds and Machines.  https://doi.org/10.1007/s11023-017-9442-5.Google Scholar
  190. Mandik, P. (2003). Varieties of representation in evolved and embodied neural networks. Biology and Philosophy, 18, 95–130.CrossRefGoogle Scholar
  191. Mangel, S. C. (1991). Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. Journal of Physiology, 442, 211–234.CrossRefGoogle Scholar
  192. Marler, P., & Peters, S. (1981). Sparrows learn adult song and more from memory. Science, 213(4509), 780–782.  https://doi.org/10.1126/science.213.4509.780.CrossRefGoogle Scholar
  193. Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76(2), 266–280.  https://doi.org/10.1016/j.neuron.2012.10.002.CrossRefGoogle Scholar
  194. Matsumoto, M., & Komatsu, H. (2005). Neural responses in the macaque v1 to bar stimuli with various lengths presented on the blind spot. Journal of Neurophysiology, 93(5), 2374–2387.  https://doi.org/10.1152/jn.00811.2004.CrossRefGoogle Scholar
  195. Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., et al. (2010). Motor control by sensory cortex. Science, 330(6008), 1240–1243.  https://doi.org/10.1126/science.1195797.CrossRefGoogle Scholar
  196. Maunsell, J. H., & van Essen, D. C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience, 3(12), 2563–2586.Google Scholar
  197. McFarland, J. M., Bondy, A. G., Saunders, R. C., Cumming, B. G., & Butts, D. A. (2015). Saccadic modulation of stimulus processing in primary visual cortex. Nature Communications, 6, 8110.  https://doi.org/10.1038/ncomms9110.CrossRefGoogle Scholar
  198. Milkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.Google Scholar
  199. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167.Google Scholar
  200. Miller, H., Rayburn-Reeves, R., & Zentall, T. (2009). What do dogs know about hidden objects? Behavioral Processes, 81(3), 439–446.CrossRefGoogle Scholar
  201. Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT Press.Google Scholar
  202. Millikan, R. G. (1993). White Queen psychology and other essays for alice. Cambridge, MA: MIT Press.Google Scholar
  203. Mishkin, M., & Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain Research, 143(2), 313–323.CrossRefGoogle Scholar
  204. Mooney, R. (2009). Neural mechanisms for learned birdsong. Learning & Memory, 16(11), 655–669.  https://doi.org/10.1101/lm.1065209.CrossRefGoogle Scholar
  205. Moran, D. W., & Schwartz, A. B. (2000). One motor cortex, two different views. Nature Neuroscience, 3(10), 963.  https://doi.org/10.1038/79880. (author reply 963–965).CrossRefGoogle Scholar
  206. Morgan, A. (2014). Representations gone mental. Synthese, 191(2), 213–244.CrossRefGoogle Scholar
  207. Morgan, A., & Piccinini, G. (2017). Towards a cognitive neuroscience of intentionality. Minds and Machines.  https://doi.org/10.1007/s11023-017-9437-2 Google Scholar
  208. Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51(5), 527–539.  https://doi.org/10.1016/j.neuron.2006.08.012.CrossRefGoogle Scholar
  209. Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.CrossRefGoogle Scholar
  210. Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89.  https://doi.org/10.1146/annurev.neuro.31.061307.090723.CrossRefGoogle Scholar
  211. Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience, 16(23), 7733–7741.Google Scholar
  212. Muckli, L., & Petro, L. S. (2013). Network interactions: non-geniculate input to V1. Current Opinion in Neurobiology, 23(2), 195–201.  https://doi.org/10.1016/j.conb.2013.01.020.CrossRefGoogle Scholar
  213. Murray, J. D., Jaramillo, J., & Wang, X. J. (2017). Working memory and decision-making in a frontoparietal circuit model. Journal of Neuroscience, 37(50), 12167–12186.  https://doi.org/10.1523/JNEUROSCI.0343-17.2017.CrossRefGoogle Scholar
  214. Mylopoulos, M., & Pacherie, E. (2017). Intentions and motor representations: The interface challenge. Review of Philosophy and Psychology, 8(2), 317–336.  https://doi.org/10.1007/s13164-016-0311-6.CrossRefGoogle Scholar
  215. Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., & Malinow, R. (2014). Engineering a memory with LTD and LTP. Nature, 511(7509), 348–352.  https://doi.org/10.1038/nature13294.CrossRefGoogle Scholar
  216. Neander, K. (2012). Teleological theories of mental content. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2012 Edition). https://plato.stanford.edu/archives/spr2012/entries/content-teleological/.
  217. Neander, K. (2017). A mark of the mental: In defense of informational teleosemantics. Cambridge, MA: MIT Press.Google Scholar
  218. Newsome, W. T., Britten, K. H., & Movshon, J. A. (1989). Neuronal correlates of a perceptual decision. Nature, 341(6237), 52–54.  https://doi.org/10.1038/341052a0.CrossRefGoogle Scholar
  219. Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6), 2201–2211.Google Scholar
  220. Noë, A. (2010). Vision without representation. In N. Gangopadhyay, M. Madary, & F. Spicer (Eds.), Perception, action, and consciousness: Sensiromotor dynamics and two visual systems (pp. 245–256). Oxford: OUP.CrossRefGoogle Scholar
  221. O’Brien, G., & Opie, J. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezac (Eds.), Representation in mind (pp. 1–20). Amsterdam: Elsevier.Google Scholar
  222. Papineau, D. (1984). Representation and explanation. Philosophy of Science, 51, 550–572.CrossRefGoogle Scholar
  223. Papineau, D. (1993). Philosophical naturalism. Oxford: Blackwell.Google Scholar
  224. Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389–443.  https://doi.org/10.1093/brain/60.4.389.CrossRefGoogle Scholar
  225. Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47(3), 329–342.CrossRefGoogle Scholar
  226. Pfenning, A. R., Hara, E., Whitney, O., Rivas, M. V., Wang, R., Roulhac, P. L., et al. (2014). Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 346(6215), 1256846.  https://doi.org/10.1126/science.1256846.CrossRefGoogle Scholar
  227. Phongphanphanee, P., Mizuno, F., Lee, P. H., Yanagawa, Y., Isa, T., & Hall, W. C. (2011). A circuit model for saccadic suppression in the superior colliculus. Journal of Neuroscience, 31(6), 1949–1954.  https://doi.org/10.1523/JNEUROSCI.2305-10.2011.CrossRefGoogle Scholar
  228. Piccinini, G. (forthcoming). Nonnatural mental representation. In K. Dolega, T. Schlicht, J. Smortchkova (Eds.), What are mental representations? Oxford: Oxford University Press.Google Scholar
  229. Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38.CrossRefGoogle Scholar
  230. Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Sciences, 18(9), 451–456.  https://doi.org/10.1016/j.tics.2014.05.006.CrossRefGoogle Scholar
  231. Pilley, J., & Reid, A. (2011). Border collie comprehends object names as verbal referents. Behavioral Processes, 86, 184–195.CrossRefGoogle Scholar
  232. Polonsky, A., Blake, R., Braun, J., & Heeger, D. J. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 3(11), 1153–1159.  https://doi.org/10.1038/80676.CrossRefGoogle Scholar
  233. Poulet, J. F., & Hedwig, B. (2003). Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket. Journal of Neuroscience, 23(11), 4717–4725.Google Scholar
  234. Poulet, J. F., & Hedwig, B. (2006). The cellular basis of a corollary discharge. Science, 311(5760), 518–522.  https://doi.org/10.1126/science.1120847.CrossRefGoogle Scholar
  235. Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2010). Persistent representation of juvenile experience in the adult songbird brain. Journal of Neuroscience, 30(31), 10586–10598.  https://doi.org/10.1523/JNEUROSCI.6042-09.2010.CrossRefGoogle Scholar
  236. Pruszynski, J. A., Omrani, M., & Scott, S. H. (2014). Goal-dependent modulation of fast feedback responses in primary motor cortex. Journal of Neuroscience, 34(13), 4608–4617.  https://doi.org/10.1523/JNEUROSCI.4520-13.2014.CrossRefGoogle Scholar
  237. Purves, D. (2018). Neuroscience (6th ed.). New York: Oxford University Press.Google Scholar
  238. Qi, X. L., Katsuki, F., Meyer, T., Rawley, J. B., Zhou, X., Douglas, K. L., et al. (2010). Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Frontiers in Systems Neuroscience, 4, 12.  https://doi.org/10.3389/fnsys.2010.00012.Google Scholar
  239. Quintana, J., Yajeya, J., & Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Research, 474(2), 211–221.CrossRefGoogle Scholar
  240. Raja, V. (2017). A theory of resonance: Towards an ecological cognitive architecture. Minds and Machines.  https://doi.org/10.1007/s11023-017-9431-8.Google Scholar
  241. Ramirez, S., Liu, X., Lin, P. A., Suh, J., Pignatelli, M., Redondo, R. L., et al. (2013). Creating a false memory in the hippocampus. Science, 341(6144), 387–391.  https://doi.org/10.1126/science.1239073.CrossRefGoogle Scholar
  242. Ramsey, F. P. (1931). The foundations of mathematics, and other logical essays. London: Routledge and Kegan Paul.MATHGoogle Scholar
  243. Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  244. Ramsey, W. M. (2016). Untangling two questions about mental representation. New Ideas in Psychology, 40, 3–12.CrossRefGoogle Scholar
  245. Reijmers, L. G., Perkins, B. L., Matsuo, N., & Mayford, M. (2007). Localization of a stable neural correlate of associative memory. Science, 317(5842), 1230–1233.  https://doi.org/10.1126/science.1143839.CrossRefGoogle Scholar
  246. Richmond, B. J., & Wurtz, R. H. (1980). Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. Journal of Neurophysiology, 43(4), 1156–1167.CrossRefGoogle Scholar
  247. Riley, M. R., & Constantinidis, C. (2016). Role of prefrontal persistent activity in working memory. Frontiers in Systems Neuroscience.  https://doi.org/10.3389/fnsys.2015.00181.Google Scholar
  248. Roberts, T. F., Gobes, S. M., Murugan, M., Olveczky, B. P., & Mooney, R. (2012). Motor circuits are required to encode a sensory model for imitative learning. Nature Neuroscience, 15(10), 1454–1459.  https://doi.org/10.1038/nn.3206.CrossRefGoogle Scholar
  249. Robinson, D. L., & Wurtz, R. H. (1976). Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. Journal of Neurophysiology, 39(4), 852–870.CrossRefGoogle Scholar
  250. Rockland, K. S., & Knutson, T. (2000). Feedback connections from area MT of the squirrel monkey to areas V1 and V2. Journal of Comparative Neurology, 425(3), 345–368.CrossRefGoogle Scholar
  251. Rodieck, R. W. (1998). The first steps in seeing. Sunderland, MA: Sinauer Associates.Google Scholar
  252. Roska, B., & Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410(6828), 583–587.  https://doi.org/10.1038/35069068.CrossRefGoogle Scholar
  253. Rossignol, S., & Bouyer, L. (2004). Adaptive mechanisms of spinal locomotion in cats. Integrative and Comparative Biology, 44(1), 71–79.  https://doi.org/10.1093/icb/44.1.71.CrossRefGoogle Scholar
  254. Rouse, J. (2015). Articulating the world: Conceptual understanding and the scientific image (423 pp.). University of Chicago Press.Google Scholar
  255. Rust, N. (2014). Population-based representations: From implicit to explicit. In M. Gazzaniga & G. Ronald (Eds.), The cognitive neurosciences (5th ed., pp. 337–347). Cambridge: MIT Press.Google Scholar
  256. Ryder, D. (2004a). SINBAD neurosemantics: A theory of mental representation. Mind and Language, 19(2), 211–240.CrossRefGoogle Scholar
  257. Ryder, D. (2004b). Models in the brain. Oxford: Oxford University Press.Google Scholar
  258. Ryle, G. (1949). The concept of mind. London: Hutchinson’s University Library.Google Scholar
  259. Salinas, E., & Abbott, L. F. (1995). Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 15(10), 6461–6474.Google Scholar
  260. Salzman, C. D., Britten, K. H., & Newsome, W. T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346(6280), 174–177.  https://doi.org/10.1038/346174a0.CrossRefGoogle Scholar
  261. Salzman, C. D., Murasugi, C. M., Britten, K. H., & Newsome, W. T. (1992). Microstimulation in visual area MT: Effects on direction discrimination performance. Journal of Neuroscience, 12(6), 2331–2355.Google Scholar
  262. Sanes, J. R., & Masland, R. H. (2015). The types of retinal ganglion cells: current status and implications for neuronal classification. Annual Review of Neuroscience, 38, 221–246.  https://doi.org/10.1146/annurev-neuro-071714-034120.CrossRefGoogle Scholar
  263. Scarantino, A. (2015). Information as a probabilistic difference maker. Australasian Journal of Philosophy, 93(3), 419–443.CrossRefGoogle Scholar
  264. Scarantino, A., & Piccinini, G. (2010). Information without truth. Metaphilosophy, 43(3), 313–330.CrossRefGoogle Scholar
  265. Schenk, T., & Zihl, J. (1997). Visual motion perception after brain damage: I. Deficits in global motion perception. Neuropsychologia, 35(9), 1289–1297.CrossRefGoogle Scholar
  266. Schneider, S. (2011). The language of thought: A new philosophical direction. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  267. Schwartzman, R. J. (1978). A behavioral analysis of complete unilateral section of the pyramidal tract at the medullary level in Macaca mulatta. Annals of Neurology, 4(3), 234–244.  https://doi.org/10.1002/ana.410040308.CrossRefGoogle Scholar
  268. Scott, S. H. (2000). Reply to ‘one motor cortex, two different views’. Nature Neuroscience, 3(10), 964–965.  https://doi.org/10.1038/79888.CrossRefGoogle Scholar
  269. Scott, S. H. (2016). A functional taxonomy of bottom-up sensory feedback processing for motor actions. Trends in Neurosciences, 39(8), 512–526.  https://doi.org/10.1016/j.tins.2016.06.001.CrossRefGoogle Scholar
  270. Searle, J. (1983). Intentionality: An essay in the philosophy of mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  271. Sellars, W. (1956). Empiricism and the philosophy of mind. In H. Feigl & M. Scriven (Eds.), Minnesota studies in the philosophy of science (Vol. I, pp. 253–329). Minneapolis, MN: University of Minnesota Press.Google Scholar
  272. Sellars, W. (1981). Mental events. Philosophical Studies, 39, 325–345.CrossRefGoogle Scholar
  273. Sereno, M. I. (2014). Origin of symbol-using systems: speech, but not sign, without the semantic urge. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1651), 20130303.  https://doi.org/10.1098/rstb.2013.0303.CrossRefGoogle Scholar
  274. Shadmehr, R., Brandt, J., & Corkin, S. (1998). Time-dependent motor memory processes in amnesic subjects. Journal of Neurophysiology, 80(3), 1590–1597.CrossRefGoogle Scholar
  275. Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.  https://doi.org/10.1007/s00221-008-1280-5.CrossRefGoogle Scholar
  276. Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108.  https://doi.org/10.1146/annurev-neuro-060909-153135.CrossRefGoogle Scholar
  277. Shagrir, O. (2012). Structural representations and the brain. The British Journal for the Philosophy of Science, 63(3), 519–545.CrossRefGoogle Scholar
  278. Shagrir, O. (2017). The brain as an input–output model of the world. Minds and Machines.  https://doi.org/10.1007/s11023-017-9443-4.Google Scholar
  279. Shea, N. (2007). Consumers need information: Supplementing teleosemantics with an input condition. Philosophy and Phenomenological Research, 75, 404–435.CrossRefGoogle Scholar
  280. Shea, N. (2014). Exploitable isomorphism and structural representation. Proc Aristot Soc CXIV, 77–92.Google Scholar
  281. Shepard, R., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology, 1(1), 1–17.CrossRefGoogle Scholar
  282. Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Journal of Physiology, 40(1–2), 28–121.CrossRefGoogle Scholar
  283. Skotko, B. G., Andrews, E., & Einstein, G. (2005). Language and the medial temporal lobe: Evidence from HM’s spontaneous discourse. Journal of Memory and Language, 53(3), 397–415.  https://doi.org/10.1016/j.jml.2005.05.003.CrossRefGoogle Scholar
  284. Soo, F. S., Schwartz, G. W., Sadeghi, K., & Berry, M. J., 2nd. (2011). Fine spatial information represented in a population of retinal ganglion cells. Journal of Neuroscience, 31(6), 2145–2155.  https://doi.org/10.1523/JNEUROSCI.5129-10.2011.CrossRefGoogle Scholar
  285. Sparks, D. L., Lee, C., & Rohrer, W. H. (1990). Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harbor Symposia on Quantitative Biology, 55, 805–811.CrossRefGoogle Scholar
  286. Spillmann, L. (2014). Receptive fields of visual neurons: The early years. Perception, 43(11), 1145–1176.CrossRefGoogle Scholar
  287. Sprevak, M. (2013). Fictionalism about neural representations. The Monist, 96, 539–560.CrossRefGoogle Scholar
  288. Squire, L. R. (2009). The legacy of patient H.M. for neuroscience. Neuron, 61(1), 6–9.  https://doi.org/10.1016/j.neuron.2008.12.023.CrossRefGoogle Scholar
  289. Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.  https://doi.org/10.1146/annurev.neuro.27.070203.144130.CrossRefGoogle Scholar
  290. Squire, L., & Wixted, J. (2015). Remembering. Daedalus, Winter, 2015, 53–66.CrossRefGoogle Scholar
  291. Staley, K. (1999). Golden events and statistics: What’s wrong with Galison’s image/logic distinction. Perspectives on Science, 7, 196–230.MathSciNetMATHCrossRefGoogle Scholar
  292. Stampe, D. (1977). Toward a causal theory of linguistic representation. In P. A. French, T. E. Uehling Jr., & H. K. Wettstein (Eds.), Midwest studies in philosophy: Studies in the philosophy of language (Vol. 2, pp. 81–102). Minneapolis: University of Minnesota Press.Google Scholar
  293. Standing, L. (1973). Learning 10,000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207–222.  https://doi.org/10.1080/14640747308400340.CrossRefGoogle Scholar
  294. Stangor, C. (2011). Introduction to Psychology. Saylor Academy.Google Scholar
  295. Stich, S. (1983). From Folk psychology to cognitive science: The case against belief. Cambridge, MA: MIT Press.Google Scholar
  296. Sullivan, J. A. (2009). The multiplicity of experimental protocols: A challenge to reductionist and non-reductionist models of the unity of neuroscience. Synthese, 167, 511–539.CrossRefGoogle Scholar
  297. Sullivan, J. A. (2010). A role for representation in cognitive neurobiology. Philosophy of Science, 77(5), 875–887.CrossRefGoogle Scholar
  298. Sussillo, D., Churchland, M. M., Kaufman, M. T., & Shenoy, K. V. (2015). A neural network that finds a naturalistic solution for the production of muscle activity. Nature Neuroscience, 18(7), 1025–1033.  https://doi.org/10.1038/nn.4042.CrossRefGoogle Scholar
  299. Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese, 87(3), 449.MathSciNetCrossRefGoogle Scholar
  300. Takeda, K., & Funahashi, S. (2002). Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks. Journal of Neurophysiology, 87(1), 567–588.  https://doi.org/10.1152/jn.00249.2001.CrossRefGoogle Scholar
  301. Thomson, E. E., & Kristan, W. B. (2005). Quantifying stimulus discriminability: A comparison of information theory and ideal observer analysis. Neural Computation, 17(4), 741–778.  https://doi.org/10.1162/0899766053429435.MATHCrossRefGoogle Scholar
  302. Todorov, E. (2000a). Direct cortical control of muscle activation in voluntary arm movements: A model. Nature Neuroscience, 3(4), 391–398.  https://doi.org/10.1038/73964.CrossRefGoogle Scholar
  303. Todorov, E. (2000b). Reply to ‘one motor cortex, two different views’. Nature Neuroscience, 3(10), 964.  https://doi.org/10.1038/79886.CrossRefGoogle Scholar
  304. Todorov, E. (2000c). Reply to ‘one motor cortex, two different views’. Nature Neuroscience, 3(10), 963–964.  https://doi.org/10.1038/79884.CrossRefGoogle Scholar
  305. Tong, F., Nakayama, K., Vaughan, J. T., & Kanwisher, N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21, 753–759.CrossRefGoogle Scholar
  306. Tootell, R. B., Switkes, E., Silverman, M. S., & Hamilton, S. L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience, 8(5), 1531–1568.Google Scholar
  307. Truccolo, W., Friehs, G. M., Donoghue, J. P., & Hochberg, L. R. (2008). Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. Journal of Neuroscience, 28(5), 1163–1178.  https://doi.org/10.1523/JNEUROSCI.4415-07.2008.CrossRefGoogle Scholar
  308. Umilta, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. (2008). When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences, 105(6), 2209–2213.  https://doi.org/10.1073/pnas.0705985105.CrossRefGoogle Scholar
  309. Ungerleider, L. G., & Desimone, R. (1986). Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology, 248(2), 190–222.  https://doi.org/10.1002/cne.902480204.CrossRefGoogle Scholar
  310. van Gelder, T. (1995). What might cognition be, if not computation. The Journal of Philosophy, 92(7), 345–381.CrossRefGoogle Scholar
  311. Varela, F. J., Thompson, E., & Rosch, E. (2017). The embodied mind (Revised ed.). Cambridge, MA: MIT Press.Google Scholar
  312. Volkinshtein, D., & Meir, R. (2011). Delayed feedback control requires an internal forward model. Biological Cybernetics, 105(1), 41–53.  https://doi.org/10.1007/s00422-011-0450-x.MathSciNetMATHCrossRefGoogle Scholar
  313. Wandell, B. A. (1995). Foundations of vision. Sunderland, MA: Sinauer Associates.Google Scholar
  314. Waskan, J. (2006). Models and cognition: Prediction and explanation in everyday life and in science. Cambridge, MA: The MIT Press.Google Scholar
  315. Watanabe, Y., & Funahashi, S. (2004). Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. I. Cue-, delay-, and response-period activity. Journal of Neurophysiology, 92(3), 1738–1755.  https://doi.org/10.1152/jn.00994.2003.CrossRefGoogle Scholar
  316. Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.Google Scholar
  317. Weber, M. (2014). Experiment in biology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2014 Edition). https://plato.stanford.edu/archives/win2014/entries/biology-experiment/.
  318. Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K., et al. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 408(6810), 361–365.  https://doi.org/10.1038/35042582.CrossRefGoogle Scholar
  319. White, B. J., Berg, D. J., Kan, J. Y., Marino, R. A., Itti, L., & Munoz, D. P. (2017). Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nature Communications, 8, 14263.  https://doi.org/10.1038/ncomms14263.CrossRefGoogle Scholar
  320. Whitlock, J. R., Heynen, A. J., Shuler, M. G., & Bear, M. F. (2006). Learning induces long-term potentiation in the hippocampus. Science, 313(5790), 1093–1097.  https://doi.org/10.1126/science.1128134.CrossRefGoogle Scholar
  321. Wickersham, I. R., Lyon, D. C., Barnard, R. J., Mori, T., Finke, S., Conzelmann, K. K., et al. (2007). Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron, 53(5), 639–647.  https://doi.org/10.1016/j.neuron.2007.01.033.CrossRefGoogle Scholar
  322. Williams, D. (2017). Predictive processing and the representation wars. Minds and Machines.  https://doi.org/10.1007/s11023-017-9441-6.Google Scholar
  323. Wimmer, K., Nykamp, D. Q., Constantinidis, C., & Compte, A. (2014). Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nature Neuroscience, 17(3), 431–439.  https://doi.org/10.1038/nn.3645.CrossRefGoogle Scholar
  324. Wolpert, D. M., & Miall, R. C. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.MATHCrossRefGoogle Scholar
  325. Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.CrossRefGoogle Scholar
  326. Xu, H., Han, C., Chen, M., Li, P., Zhu, S., Fang, Y., et al. (2016). Rivalry-like neural activity in primary visual cortex in anesthetized monkeys. Journal of Neuroscience, 36(11), 3231–3242.  https://doi.org/10.1523/JNEUROSCI.3660-15.2016.CrossRefGoogle Scholar
  327. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., & Deisseroth, K. (2011). Optogenetics in neural systems. Neuron, 71(1), 9–34.  https://doi.org/10.1016/j.neuron.2011.06.004.CrossRefGoogle Scholar
  328. Zylberberg, J., & Strowbridge, B. W. (2017). Mechanisms of persistent activity in cortical circuits: Possible neural substrates for working memory. Annual Review of Neuroscience, 40, 603–627.  https://doi.org/10.1146/annurev-neuro-070815-014006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Duke UniversityDurhamUSA
  2. 2.University of Missouri – St. LouisSt. LouisUSA

Personalised recommendations