Minds and Machines

, Volume 28, Issue 1, pp 93–117 | Cite as

Neural Representations Beyond “Plus X”



In this paper we defend structural representations, more specifically neural structural representation. We are not alone in this, many are currently engaged in this endeavor. The direction we take, however, diverges from the main road, a road paved by the mathematical theory of measure that, in the 1970s, established homomorphism as the way to map empirical domains of things in the world to the codomain of numbers. By adopting the mind as codomain, this mapping became a boon for all those convinced that a representation system should bear similarities with what was being represented, but struggled to find a precise account of what such similarities mean. The euforia was brief, however, and soon homomorphism revealed itself to be affected by serious weaknesses, the primary one being that it included systems embarrassingly alien to representations. We find that the defense attempts that have followed, adopt strategies that share a common format: valid structural representations come as “homomorphism plus X”, with various “X”, provided in descriptive format only. Our alternative direction stems from the observation of the overlooked departure from homomorphism as used in the theory of measure and its later use in mental representations. In the former case, the codomain or the realm of numbers, is the most suited for developing theorems detailing the existence and uniqueness of homomorphism for a wide range of empirical domains. In the latter case, the codomain is the realm of the mind, possibly more vague and more ill-defined than the empirical domain itself. The time is ripe for articulating the mapping between represented domains and the mind in formal terms, by exploiting what is currently known about coding mechanisms in the brain. We provide a sketch of a possible development in this direction, one that adopts the theory of neural population coding as codomain. We will show that our framework is not only not in disagreement with the “plus X” proposals, but can lead to natural derivation of several of the “X”.


Structural representation Neural population coding Measurement theory 


  1. Abbott, L. F., Rolls, E., & Tovee, M. J. (1996). Representational capacity of face coding in monkeys. Cerebral Cortex, 6, 498–505.CrossRefGoogle Scholar
  2. Bartels, A. (2006). Defending the structural concept of representation. Theoria, 55, 7–19.MathSciNetMATHGoogle Scholar
  3. Bechtel, W. (2011). Mechanism and biological explanation. Philosophy of Science, 78, 533–557.CrossRefGoogle Scholar
  4. Bednar, J. A. (2009). Topographica: Building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components. Frontiers in Neuroinformatics, 3, 8.CrossRefGoogle Scholar
  5. Bednar, J. A. (2012). Building a mechanistic model of the development and function of the primary visual cortex. Journal of Physiology—Paris, 106, 194–211.CrossRefGoogle Scholar
  6. Bermúdez-Rattoni, F. (Ed.) (2007). Neural plasticity and memory: From genes to brain imaging. Boca Raton, FL: CRC Press.Google Scholar
  7. Bernstein, L. E., & Liebenthal, E. (2014). Neural pathways for visual speech perception. Frontiers in Neuroscience, 8, 386.CrossRefGoogle Scholar
  8. Blahut, R. E. (1987). Principles and practice of information theory. Reading, MA: Addison Wesley.MATHGoogle Scholar
  9. Brooks, R. A. (1991). Intelligence without representation. In J. Haugeland (Ed.), Mind Design II (2nd ed., pp. 395–420). Cambridge, MA: MIT Press.Google Scholar
  10. Brunel, N., & Nadal, J. P. (1998). Mutual information, fisher information, and population coding. Neural Computation, 10, 1731–1757.CrossRefGoogle Scholar
  11. Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.CrossRefGoogle Scholar
  12. Calvert, G. A., Bullmore, E. T., Brammer, M. J., Campbell, R., Williams, S. C. R., McGuire, P. K., et al. (1997). Activation of auditory cortex during silent lipreading. Science, 276, 593–596.CrossRefGoogle Scholar
  13. Casasanto, D., & Lupyan, G. (2015). All concepts are ad hoc concepts. In S. Laurence & E. Margolis (Eds.), The conceptual mind: New directions in the study of concepts. Cambridge, MA: MIT Press.Google Scholar
  14. Cerreira-Perpiñán, M., & Goodhill, G. J. (2004). Influence of lateral connections on the structure of cortical maps. Journal of Neurophysiology, 92, 2947–2959.CrossRefGoogle Scholar
  15. Chalmers, D. (2011). A computational foundation for the study of cognition. Journal of Consciousness Studies, 12, 323–357.Google Scholar
  16. Chemero, A. (2000). Anti-representationalism and the dynamical stance. Philosophy of Science, 67, 625–647.CrossRefGoogle Scholar
  17. Chikazoe, J., Lee, D. H., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience, 17, 1114–1122.CrossRefGoogle Scholar
  18. Church, A. (1941). The Calculi of Lambda Conversion. Princeton, NJ: Princeton University Press.MATHGoogle Scholar
  19. Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.Google Scholar
  20. Churchland, P. S., & Sejnowski, T. (1994). The computational brain. Cambridge, MA: MIT Press.MATHGoogle Scholar
  21. Churchland, P. S., & Sejnowski, T. J. (1990). Neural representation and neural computation. Philosophical Perspectives, 4, 343–382.CrossRefGoogle Scholar
  22. Clark, A. (2001). Reasons, robots and the extended mind. Minds and Language, 16, 121–145.CrossRefGoogle Scholar
  23. Copeland, J. B., Posy, C. J., & Shagrir, O. (Eds.). (2013). Computability: Turing, gödel, church, and beyond. Cambridge, MA: MIT Press.Google Scholar
  24. Cummins, R. (1989). Meaning and mental representation. Cambridge, MA: MIT Press.Google Scholar
  25. Dretske, F. I. (1981). Knowledge and the flow of Information. Cambridge, MA: MIT Press.MATHGoogle Scholar
  26. Falmagne, J. C. (1980). A probabilistic theory of extensive measurement. Philosophy of Science, 47, 277–296.MathSciNetCrossRefGoogle Scholar
  27. Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55.CrossRefGoogle Scholar
  28. Fitzpatrick, D. C., Batra, R., Stanford, T. R., & Kuwada, S. (1997). A neuronal population code for sound localization. Nature, 388, 871–874.CrossRefGoogle Scholar
  29. Fodor, J. (1981). Representations: Philosofical essay on the foundation of cognitive science. Cambridge, MA: MIT Press.Google Scholar
  30. Fodor, J. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. Cambridge, MA: MIT Press.Google Scholar
  31. Fodor, J. (1990). A theory of content and other essays. Cambridge: Cambridge University Press.Google Scholar
  32. Fresco, N. (2014). Physical computation and cognitive science. Berlin: Springer.CrossRefGoogle Scholar
  33. Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: High dimensionality for higher cognition. Current Opinion in Neurobiology, 37, 66–74.CrossRefGoogle Scholar
  34. Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.MATHGoogle Scholar
  35. Gallistel, C. R., & King, A. P. (2010). Memory and the computational brain: Why cognitive science will transform neuroscience. New York: Wiley.Google Scholar
  36. Ganter, B., & Wille, R. (1999). Formal concept analysis: Mathematical foundations. Berlin: Springer.MATHCrossRefGoogle Scholar
  37. van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Science, 21, 615–665.Google Scholar
  38. Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 1416–1419.CrossRefGoogle Scholar
  39. Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology and Philosophy, 32, 337–355.CrossRefGoogle Scholar
  40. Godfrey-Smith, P. (1998). Complexity and the function of mind in nature. Cambridge: Cambridge University Press.Google Scholar
  41. Grinvald, A., Lieke, E. E., Frostig, R. D., & Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. Journal of Neuroscience, 14, 2545–2568.Google Scholar
  42. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Science, 27, 377–442.Google Scholar
  43. Hartmanis, J., & Stearns, R. E. (1965). On the computational complexity of algorithms. Transaction of American Mathematical Society, 117, 285–306.MathSciNetMATHCrossRefGoogle Scholar
  44. Haugeland, J. (1991). Representational genera. In W. Ramsey, S. P. Stich, & D. E. Rumelhart (Eds.), Philosophy and connectionist theory (pp. 61–89). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  45. Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (1st ed., pp. 77–109). Cambridge: MIT Press.Google Scholar
  46. Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. Cambridge, MA: MIT Press.Google Scholar
  47. Isaac, A. M. (2013). Objective similarity and mental representation. Australasian Journal of Philosophy, 91, 683–704.CrossRefGoogle Scholar
  48. Johnson, D. S., & Papadimitriou, C. H. (1985). Computational complexity. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, & D. B. Shmoys (Eds.), The travelling salesman problem: A guided tour of combinatorial optimization (pp. 37–85). New York: New York.Google Scholar
  49. Johnson-Laird, P. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge: Cambridge University Press.Google Scholar
  50. Kaplan, D. M., & Craver, C. F. (2011). Towards a mechanistic philosophy of neuroscience. In S. French & J. Saatsi (Eds.), Continuum companion to the philosophy of science (pp. 268–292). London: Continuum Press.Google Scholar
  51. Kolb, B. (1995). Brain plasticity and behavior. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  52. Krantz, D., Luce, D., Suppes, P., & Tversky, A. (1971). Foundations of measurement—Volume I additive and polynomial representations. New York: Academic Press.MATHGoogle Scholar
  53. Kripke, S. A. (1972). Naming and necessity. In D. Davidson & G. H. Harman (Eds.), Semantics of natural language (pp. 253–355). Dordrecht, NL: Reidel Publishing Company.CrossRefGoogle Scholar
  54. Lehky, S. R., & Tanaka, K. (2016). Neural representation for object recognition in inferotemporal cortex. Current Opinion in Neurobiology, 37, 23–35.CrossRefGoogle Scholar
  55. Lehky, S. R., Kiani, R., Esteky, H., & Tanaka, K. (2014). Dimensionality of object representations in monkey inferotemporal cortex. Neural Computation, 26, 2135–2162.CrossRefGoogle Scholar
  56. Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation, 8, 531–543.CrossRefGoogle Scholar
  57. Luce, D., Krantz, D., Suppes, P., & Tversky, A. (1990). Foundations of measurement—Volume III representation, axiomatization, and invariance. New York: Academic Press.MATHGoogle Scholar
  58. Malt, B. C. (2013). Context sensitivity and insensitivity in object naming. Language and Cognition, 5, 81–97.CrossRefGoogle Scholar
  59. McLendon, H. J. (1955). Uses of similarity of structure in contemporary philosophy. Mind, 64, 79–95.CrossRefGoogle Scholar
  60. Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Poggio, T. (2008). Dynamic population coding of category information in inferior temporal and prefrontal cortex. Journal of Neurophysiology, 100, 1407–1419.CrossRefGoogle Scholar
  61. Miikkulainen, R., Bednar, J. A., Choe, Y., & Sirosh, J. (1997). Self-organization, plasticity, and low-level visual phenomena in a laterally connected map model of the primary visual cortex. In R. L. Goldstone, P. G. Schyns, & D. L. Medin (Eds.), Psychology of Learning and Motivation (Vol. 36, pp. 257–308). New York: Academic Press.Google Scholar
  62. Miikkulainen, R., Bednar, J., Choe, Y., & Sirosh, J. (2005). Computational maps in the visual cortex. New York: Springer.Google Scholar
  63. Miłkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.Google Scholar
  64. Miłkowski, M. (2016). Function and causal relevance of content. New Ideas in Psychology, 40, 94–102.CrossRefGoogle Scholar
  65. Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT Press.Google Scholar
  66. Millikan, R. G. (1989). Biosemantic. Journal of Philosophy, 86, 242–265.CrossRefGoogle Scholar
  67. Miura, K., Mainen, Z. F., & Uchida, N. (2012). Odor representations in olfactory cortex: Distributed rate coding and decorrelated population activity. Neuron, 74, 1087–1098.CrossRefGoogle Scholar
  68. Montague, R. (1974). In R. H. Thomason (Ed.), Formal philosophy: Selected papers of richard montague. New Haven (CO): Yale University Press.Google Scholar
  69. Morgan, A. (2014). Representations gone mental. Synthese, 191, 213–244.CrossRefGoogle Scholar
  70. Murphy, G. L. (2002). The big book of concepts. Cambridge: Cambridge University Press.Google Scholar
  71. Nayar, S., & Murase, H. (1995). Visual learning and recognition of 3-d object by appearence. International Journal of Computer Vision, 14, 5–24.CrossRefGoogle Scholar
  72. Newman, M. H. A. (1928). Mr. Russell’s “causal theory of perception”. Mind, 37, 137–148.CrossRefGoogle Scholar
  73. O’Brien, G., & Opie, J. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezak (Eds.), Representation in mind—New approaches to mental representation. Amsterdam: Elsevier.Google Scholar
  74. Olshausen, B. A., & Field, D. J. (1996). Natural image statistics and efficient coding. Network: Computation in Neural Systems, 7, 333–339.CrossRefGoogle Scholar
  75. Pasupathy, A., & Connor, C. E. (2002). Population coding of shape in area v4. Nature Neuroscience, 5, 1332–1338.CrossRefGoogle Scholar
  76. Petersen, W. (2007). Representation of concepts as frames. In J. Škilters (Ed.), Complex cognition and qualitative science: A legacy of Oswald Külpe (pp. 151–170). Riga: Latvijas Universitate.Google Scholar
  77. Piccinini, G. (2008). Computation without representation. Philosophical studies, 137, 205–241.MathSciNetCrossRefGoogle Scholar
  78. Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.MATHCrossRefGoogle Scholar
  79. Prinz, J. (2002). Furnishing the mind—Concepts and their perceptual basis. Cambridge, MA: MIT Press.Google Scholar
  80. Priss, U. (2006). Formal concept analysis in information science. Annual Review of Information Science and Technology, 40, 521–543.CrossRefGoogle Scholar
  81. Quian Quiroga, R., & Panzeri, S. (Eds.) (2013). Principles of neural coding. Boca Raton, FL: CRC Press.Google Scholar
  82. Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  83. Ramsey, W. M. (2016). Untangling two questions about mental representation. New Ideas in Psychology, 40, 3–12.CrossRefGoogle Scholar
  84. Rescorla, M. (2015). The representational foundations of computation. Philosophia Mathematica, 23, 338–366.MathSciNetMATHCrossRefGoogle Scholar
  85. Rolls, E., & Tovee, M. J. (1995). Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology, 73, 713–726.CrossRefGoogle Scholar
  86. Rossi, G. B. (2006). A probabilistic theory of measurement. Measurement, 39, 34–50.CrossRefGoogle Scholar
  87. Russell, B. (1927). The analysis of matter. London: Harcourt.MATHGoogle Scholar
  88. Ryder, D. (2004). SINBAD neurosemantics: A theory of mental representation. Minds and Machines, 19, 211–240.Google Scholar
  89. Ryder, D. (2009). Problems of representation I: nature and role. In J. Symons & P. Calvo (Eds.), The Routledge companion to philosophy of psychology (pp. 233–250). London: Routledge.Google Scholar
  90. Sakai, K., Naya, Y., & Miyashita, Y. (1994). Neuronal tuning and associative mechanisms in form representation. Learning and Menory, 1, 83–105.Google Scholar
  91. Scheutz, M. (Ed.) (2002). Computationalism—New Directions. Cambridge, MA: MIT Press.Google Scholar
  92. Sejnowski, T. J. (1998). Neural populations revealed. Nature, 332, 308.CrossRefGoogle Scholar
  93. Shea, N. (2014). Exploitable isomorphism and structural representation. Proceedings of the Aristotelian Society, 114, 123–144.CrossRefGoogle Scholar
  94. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.CrossRefGoogle Scholar
  95. Sirosh, J., & Miikkulainen, R. (1997). Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9, 577–594.CrossRefGoogle Scholar
  96. Stevens, J. L. R., Law, J. S., Antolik, J., & Bednar, J. A. (2013). Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. JNS, 33(40), 15747–15766.Google Scholar
  97. Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78, 364–375.CrossRefGoogle Scholar
  98. Suppes, P., Krantz, D., Luce, D., & Tversky, A. (1989). Foundations of measurement—Volume II geometrical, threshold, and probabilistic representations. New York: Academic Press.MATHGoogle Scholar
  99. Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese, 87, 449–508.MathSciNetCrossRefGoogle Scholar
  100. Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.MathSciNetMATHGoogle Scholar
  101. Turrigiano, G. G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89–103.CrossRefGoogle Scholar
  102. Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 391, 892–896.Google Scholar
  103. Watson, R. (1995). Representatlonal ldeas: From Plato to Patrlcla Churchland. Dordrecht: Kluwer.Google Scholar
  104. Watt, A. J., & Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a neuron’s cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2, 5.CrossRefGoogle Scholar
  105. Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and concept hierarchies. In Formal concept analysis—Foundations and applications (pp. 1–33). Berlin: Springer.Google Scholar
  106. Wilson, S. P., Law, J. S., Mitchinson, B., Prescott, T. J., & Bednar, J. A. (2010). Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS ONE, 5, e8778.CrossRefGoogle Scholar
  107. Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  108. Woodward, J. (2008). Mental causation and neural mechanisms. In J. Hohwy & J. Kallestrup (Eds.), Being reduced: New essays on reduction, explanation, and causation (pp. 218–262). Oxford: Oxford University Press.CrossRefGoogle Scholar
  109. Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23, 1015–1027.CrossRefGoogle Scholar
  110. Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Reviews Neuroscience, 16, 1–11.Google Scholar
  111. Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population codes. Neural Computation, 10, 403–430.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cognitive ScienceUniversity of MessinaMessinaItaly
  2. 2.Department of Education SciencesUniversity of CataniaCataniaItaly

Personalised recommendations